It is commonly assumed that the singularities of kinematic mappings constitute generically smooth manifolds but this has not yet been proven. Moreover, before this assumption can be verified, the concept of genericity needs to be clarified. In this paper, two different notions of generic properties of kinematic mappings are discussed. One accounts for the stability of the manifold property with respect to small changes in the geometry of a mechanism while the other concerns the likelihood that a mechanism possesses smooth manifolds of singularities. Singularities forming smooth manifolds is the condition for singularity-free motion of overconstrained mechanisms but also has consequences for reliable control of serial manipulators. As basis for establishing genericity, a formulation of the kinematic mapping is presented that takes into account the type of joints and feasible link geometries. The continuous transition between link geometries defines a deformation of a kinematic mapping. All mappings obtained in this way constitute a class of kinematic mappings. A basic characteristic of a kinematic chain is its motion space. An explicit expression for the motion spaces of individual as well as classes of kinematic mappings is given. The actual conditions for genericity will be addressed in a forthcoming publication.

1.
Blaschke
,
W.
, 1960,
Kinematik und Quaternionen. Mathematische Monographien
,
Springer
,
New York
.
2.
Schröcker
,
H. -P.
,
Husty
,
M. L.
, and
McCarthy
,
J. M. M.
, 2007, “
Kinematic Mapping Based Assembly Mode Evaluation of Planar Four-Bar Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
129
(
9
), pp.
924
929
.
3.
Burdick
,
J. W.
, 1995, “
A Classification of 3R Regional Manipulator Singularities and Geometries
,”
Mech. Mach. Theory
0094-114X,
30
, pp.
71
89
.
4.
Cheng
,
H. H.
, and
Thompson
,
S.
, 1999, “
Singularity Analysis of Spatial Mechanisms Using Dual Polynomials and Complex Dual Numbers
,”
ASME J. Mech. Des.
0161-8458,
121
, pp.
200
205
.
5.
Kieffer
,
J.
, 1994, “
Differential Analysis of Bifurcations and Isolated Singularities of Robots and Mechanisms
,”
IEEE Trans. Rob. Autom.
1042-296X,
10
(
1
), pp.
1
10
.
6.
Pernkopf
,
F.
, and
Husty
,
M.
, 2002, “
Singularity Analysis of Spatial Steward–Gough-Platforms With Planar Base and Platform
,”
Proceedings of the ASME Design Engineering Technical Conference (DETC)
, Montreal.
7.
Cheng
,
F. -T.
,
Chen
,
J. -S.
, and
Kung
,
F. -C.
, 1998, “
Study and Resolution of Singularities for a 7-DOF Redundant Manipulator
,”
IEEE Trans. Ind. Electron.
0278-0046,
45
(
3
), pp.
469
480
.
8.
Tsumaki
,
Y.
,
Kotera
,
S.
,
Nenchev
,
D. N.
, and
Uchiyama
,
M.
, 1997, “
Singularity-Consistent Inverse Kinematics of a 6-DOF Manipulator With a Non-Spherical Wrist
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Apr. 20–25, Vol.
4
, pp.
2980
2985
.
9.
Karger
,
A.
, 1996, “
Singular Analysis of Serial Robot-Manipulators
,”
ASME J. Mech. Des.
0161-8458,
118
, pp.
520
525
.
10.
Karger
,
A.
, 1996, “
Classification of Serial Robot-Manipulators With Non-Removable Singularities
,”
ASME J. Mech. Des.
0161-8458,
118
, pp.
202
208
.
11.
Pai
,
D. K.
, and
Leu
,
M. C.
, 1992, “
Genericity and Singularities of Robot Manipulators
,”
IEEE Trans. Rob. Autom.
1042-296X,
8
(
5
), pp.
545
559
.
12.
Tsai
,
K. Y.
,
Arnold
,
J.
, and
Kohli
,
D.
, 1993, “
Generic Maps of Mechanical Manipulators
,”
Mech. Mach. Theory
0094-114X,
28
(
1
), pp.
53
64
.
13.
Wenger
,
P.
, 1997, “
Design of Cuspidal and Non-Cuspidal Robot Manipulators
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
2172
2175
.
14.
Gosselin
,
C. M.
, and
Angeles
,
J.
, 1990, “
Singular Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
1042-296X,
6
(
3
), pp.
281
290
.
15.
Di Gregorio
,
R.
, 2009, “
A Novel Method for the Singularity Analysis of Planar Mechanisms With More Than One Degree of Freedom
,”
Mech. Mach. Theory
0094-114X,
44
, pp.
83
102
.
16.
Karger
,
A.
, 2003, “
Architecture Singular Planar Parallel Manipulators
,”
Mech. Mach. Theory
0094-114X,
38
(
11
), pp.
1149
1164
.
17.
Merlet
,
J. P.
, 1989, “
Singular Configurations of Parallel Manipulators and Grassmann Geometry
,”
Int. J. Robot. Res.
0278-3649,
8
(
5
), pp.
45
56
.
18.
Merlet
,
J. P.
, 2007, “
A Formal-Numerical Approach for Robust In-Workspace Singularity Detection
,”
IEEE Trans. Rob. Autom.
1042-296X,
23
(
3
), pp.
393
402
.
19.
Zlatanov
,
D.
,
Fenton
,
R. G.
, and
Benhabib
,
B.
, 1998, “
Identification and Classification of the Singular Configurations of Mechanisms
,”
Mech. Mach. Theory
0094-114X,
33
(
6
), pp.
743
760
.
20.
Gottlieb
,
D. H.
, 1988, “
Topology and the Robot Arm
,”
Acta Appl. Math.
0167-8019,
11
(
2
), pp.
117
121
.
21.
Liu
,
G.
,
Lou
,
Y.
, and
Li
,
Z.
, 2003, “
Singularities of Parallel Manipulators: A Geometric Treatment
,”
IEEE Trans. Rob. Autom.
1042-296X,
19
(
4
), pp.
579
594
.
22.
Park
,
F. C.
, and
Kim
,
J. W.
, 1998, “
Manipulability and Singularity Analysis of Multiple Robot Systems: A Geometric Approach
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, May 16–20, pp.
1032
1037
.
23.
Arponen
,
T.
,
Piipponen
,
S.
, and
Tuomela
,
J.
, 2009, “
Kinematic Analysis of Bricard’s Mechanism
,”
Nonlinear Dyn.
0924-090X,
56
(
1–2
), pp.
85
99
.
24.
Corvez
,
S.
, and
Rouillier
,
F.
, 2004, “
Using Computer Algebra Tools Classify Serial Manipulators
,”
Proceedings of the Fourth International Workshop on Automated Deduction in Geometry
, Linz, pp.
31
43
.
25.
Donelan
,
P. S.
, and
Gibson
,
C. G.
, 2000,
Geometrical Foundation of Robotics
,
World Scientific Publishing
,
Singapore
, pp.
61
79
.
26.
Donelan
,
P. S.
, 2007, “
Singularity-Theoretic Methods in Robot Kinematics
,”
Robotica
0263-5747,
25
, pp.
641
659
.
27.
Lerbet
,
J.
, and
Hao
,
K.
, 1999, “
Kinematics of Mechanisms to the Second Order—Application to Closed Mechanisms
,”
Acta Appl. Math.
0167-8019,
59
, pp.
1
19
.
28.
Müller
,
A.
, and
Rico
,
J. M.
, 2008,
Advances in Robot Kinematics
,
J. J.
Lenarcic
and
P.
Wenger
, eds.,
Springer
,
New York
.
29.
Golubitsky
,
M.
, and
Guillemin
,
V.
, 1973,
Stable Mappings and Their Singularities
,
Springer
,
New York
.
30.
Tchoń
,
K.
, 1991, “
Differential Topology of the Inverse Kinematic Problem for Redundant Robot Manipulators
,”
Int. J. Robot. Res.
0278-3649,
10
, pp.
492
504
.
31.
Paganelli
,
D.
, 2007, “
The Ninth Homotopy Class of Spatial 3R Serial Regional Manipulators
,”
ASME J. Mech. Des.
0161-8458,
129
(
4
), pp.
445
448
.
32.
Chen
,
M. Z.
, 2006, A Classification of 6R Manipulators, arXiv:cs/0612029v1.
33.
Wenger
,
P.
, 1998, “
Classification of 3R Positioning Manipulators
,”
ASME J. Mech. Des.
0161-8458,
120
, pp.
327
332
.
34.
Zein
,
M.
,
Wenger
,
P.
, and
Chablat
,
D.
, 2006, “
An Exhaustive Study of the Workspace Topologies of All 3R Orthogonal Manipulators With Geometric Simplifications
,”
Mech. Mach. Theory
0094-114X,
41
(
8
), pp.
971
986
.
35.
Wenger
,
P.
, and
El Omri
,
K.
, 1997, “
Comments on a Classification of 3R Regional Manipulator Geometries and Singularities
,”
Mech. Mach. Theory
0094-114X,
32
(
4
), pp.
529
532
.
36.
Müller
,
A.
, 2009, “
On the Concept of Mobility Used in Robotics
,”
33rd Mechanisms and Robotics Conference, ASME 2007 International Design Engineering Technical Conferences
, Aug. 30–Sep. 2, San Diego, CA.
37.
Wohlhart
,
K.
, 1996, “
Kinematotropic Linkages
,”
Recent Advances in Robot Kinematics
,
J.
Lenarèiè
and
V.
Parent-Castelli
, eds.,
Kluwer
,
Dortrecht
, pp.
359
368
.
38.
Müller
,
A.
, 2009, “
Generic Mobility of Rigid Body Mechanisms
,”
Mech. Mach. Theory
0094-114X,
44
(
6
), pp.
1240
1255
.
39.
Murray
,
R. M.
,
Li
,
Z.
, and
Sastry
,
S. S.
, 1993,
A Mathematical Introduction to Robotic Manipulation
,
CRC
.
40.
Selig
,
J. M.
, 1996,
Geometrical Methods in Robotics
,
Springer
,
New York
.
41.
Guillemin
,
V.
, and
Pollack
,
A.
, 1974,
Differential Topology
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
42.
Hirsch
,
M. W.
, and
Smale
,
S.
, 1974, “
Differential Equations
,”
Dynamical Systems and Linear Algebra
,
Academic
,
New York
.
43.
Keerthi
,
S. S.
,
Sancheti
,
N. K.
, and
Dattasharma
,
A.
, 1992, “
Transversality Theorem: A Useful Tool for Establishing Genericity
,”
Proceedings of the 31st IEEE Conference on Decision and Control
, Tuscon, AZ, pp.
96
101
.
44.
Nijmeijer
,
H.
, and
van der Schaft
,
A.
, 1996,
Nonlinear Dynamical Control Systems
,
Springer
,
New York
.
This content is only available via PDF.
You do not currently have access to this content.