This paper outlines the design and testing of a powered ankle prosthesis, which utilizes a four-bar mechanism in conjunction with a spring and motor that mimics nonamputee (normal) ankle moments. This approach would enable transtibial (below the knee) amputees to walk at a normal speed with minimal energy input. The design takes into account the energy supplied by the wearer required to achieve many of the desired characteristics of a normal gait. A proof-of-concept prototype prosthesis was designed, optimized, fabricated, and tested with the purpose of demonstrating its ability to match crucial ankle moments during the stance phase of gait. Testing of this prosthesis proved crucial in determining the prosthesis’ capabilities and in evaluating this approach.

1.
McMulkin
,
M. L.
,
Osebold
,
W. R.
,
Mildes
,
R. D.
, and
Rosenquist
,
R. S.
, 2004, “
Comparison of Three Pediatric Prosthetic Feet During Functional Acivities
,”
Journal of Prosthetics and Orthotics
,
16
(
3
), pp.
78
84
.
2.
Lehmann
,
J. F.
,
Price
,
R.
,
Boswell-Bessette
,
S.
,
Dralle
,
A.
, and
Questad
,
K.
, 1993, “
Comprehensive Analysis of Dynamic Elastic Response Feet: Seattle Ankle/Lite Foot Versus Sach Foot
,”
Arch. Phys. Med. Rehabil.
0003-9993,
74
(
8
), pp.
853
861
.
3.
Lehmann
,
J. F.
,
Price
,
R.
,
Boswell-Bessette
,
S.
,
Dralle
,
A.
,
Questad
,
K.
, and
DeLateur
,
B. J.
, 1993, “
Comprehensive Analysis of Energy Storing Prosthetic Feet: Flex Foot and Seattle Foot Versus Standard Sach Foot
,”
Arch. Phys. Med. Rehabil.
0003-9993,
74
(
11)
, pp.
1225
1231
.
4.
Torburn
,
L.
,
Powers
,
C. M.
,
Guiterrez
,
R.
, and
Perry
,
J.
, 1995, “
Energy Expenditure During Ambulation in Dysvascular and Traumatic Below-Knee Amputees; A Comparison of Five Prosthetic Feet
,”
J. Rehabil. Res. Dev.
0748-7711,
32
(
2
), pp.
111
119
.
5.
Hansen
,
A.
,
Childress
,
D.
,
Miff
,
S.
,
Gard
,
S.
, and
Mesplay
,
K.
, 2004, “
The Human Ankle During Walking: Implications for Design of Biomimetic Ankle Prostheses
,”
J. Biomech.
0021-9290,
37
, pp.
1467
1474
.
6.
Wells
,
J.
, Jr.
,
Voglewede
,
P.
, and
Rocheleau
,
D.
, 2005, “
Design for Improved Trans-Tibial Prosthetic Devices Using Four Bar Mechanisms
,”
ASME
Paper No. DETC2005-85083.
7.
Perry
,
J.
,
Boyd
,
L.
,
Rao
,
S.
, and
Mulroy
,
S.
, 1997, “
Prosthetic Weight Acceptance Mechanics in Transtibial Amputees Wearing the Single Axis, Seattle Lite, and Flex Foot
,”
IEEE Trans. Rehabil. Eng.
1063-6528,
5
(
4
), pp.
283
289
.
8.
Winter
,
D.
, 2005,
Biomechanics and Motor Control of Human Movement
,
3rd ed.
,
University of Waterloo Press
,
Waterloo, Ont., Canada
.
9.
Silverman
,
A.
,
Fey
,
N.
,
Portillo
,
A.
,
Walden
,
J.
,
Bosker
,
G.
, and
Neptune
,
R.
, 2008, “
Compensatory Mechanisms in Below-Knee Amputee Gait in Response to Increasing Steady-State Walking Speeds
,”
Gait and Posture
0966-6362,
28
, pp.
602
609
.
10.
Aaron
,
R.
,
Herr
,
H.
,
Ciombor
,
D.
,
Hochberg
,
L.
,
Donoghue
,
J.
,
Briant
,
C.
,
Morgan
,
J.
, and
Ehrlich
,
M.
, 2006, “
Horizons in Prosthesis Development for the Restoration of Limb Function
,”
J. Am. Acad. Orthop. Surg.
1067-151X,
14
(
10
), pp.
S198
S204
.
11.
Winter
,
D.
, 1991,
The Biomechanics and Motor Control of Human Gait
,
2nd ed.
,
University of Waterloo Press
,
Waterloo, Ont., Canada
.
12.
Hansen
,
A.
,
Childress
,
D.
, and
Knox
,
E.
, 2004, “
Roll-Over Shapes of Human Locomotor Systems: Effects of Walking Speed
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
19
, pp.
407
414
.
13.
Thomas
,
S.
,
Buckon
,
C.
,
Helper
,
D.
,
Turner
,
N.
,
Moor
,
M.
, and
Krajbich
,
J.
, 2000, “
Comparison of the Seattle Lite Foot and Genesis II Prosthetic Foot During Walking and Running
,”
Journal of Prosthetics and Orthotics
,
12
(
1
), pp.
9
14
.
14.
Au
,
S.
,
Weber
,
J.
, and
Herr
,
H.
, 2009, “
Powered Ankle-Foot Prosthesis Improves Walking Metabolic Economy
,”
IEEE Trans. Rob. Autom.
1042-296X,
25
(
1
), pp.
51
66
.
15.
Hollander
,
K.
,
Ilg
,
R.
,
Sugar
,
T.
, and
Herring
,
D.
, 2006, “
An Efficient Robotic Tendon for Gait Assistance
,”
J. Biomech. Eng.
0148-0731,
128
(
5
), pp.
788
791
.
16.
Hitt
,
J.
,
Bellman
,
R.
,
Holgate
,
M.
,
Sugar
,
T.
, and
Hollander
,
K.
, 2007, “
The SPARKy (Spring Ankle With Regenerative Kinetics) Project: Design and Analysis of a Robotic Transtibial Prosthesis With Regenerative Kinetics
,”
ASME
Paper No. DETC2007-34512.
17.
Bellman
,
R.
,
Holgate
,
M.
, and
Sugar
,
T.
, 2008, “
SPARKy 3: Design of an Active Robotic Ankle Prosthesis With Two Actuated Degrees of Freedom Using Regenerative Kinetics
,”
Proceedings of the Second Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics
, pp.
511
516
.
18.
Au
,
S.
,
Herr
,
H.
,
Weber
,
J.
, and
Martinez
,
E.
, 2007, “
Powered Ankle-Foot Prosthesis for the Improvement of Amputee Ambulation
,”
Proceedings of the 2007 IEEE EMBS Annual International Conference
.
19.
Au
,
S.
,
Berniker
,
M.
, and
Herr
,
H.
, 2008, “
Powered Ankle-Foot Prosthesis to Assist Level-Ground and Stair-Descent Gaits
,”
Neural Networks
0893-6080,
21
, pp.
654
666
.
20.
Klute
,
G.
,
Czerniecki
,
J.
, and
Hannaford
,
B.
, 1998, “
Development of Powered Prosthetic Lower Limb
,”
Proceedings of the First National Meeting
, Veterans Affairs Rehabilitation, R&D Service.
21.
Versluys
,
R.
,
Desomer
,
A.
,
Lenaerts
,
G.
,
Van Damme
,
M.
,
Beyl
,
P.
,
Van der Perre
,
G.
,
Peeraer
,
L.
, and
Lefeber
,
D.
, 2008, “
A Pneumatically Powered Below-Knee Prosthesis: Design Specification and First Experiments With an Amputee
,”
Proceedings of the Second Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics
, pp.
372
377
.
22.
Sup
,
F.
,
Bohara
,
A.
, and
Goldfarb
,
M.
, 2008, “
Design and Control of a Powered Transfemoral Prosthesis
,”
Int. J. Robot. Res.
0278-3649,
27
(
2
), pp.
263
273
.
23.
Sup
,
F.
,
Varol
,
H.
,
Mitchell
,
J.
,
Withrow
,
T.
, and
Goldfarb
,
M.
, 2009, “
Self-Contained Powered Knee and Ankle Prosthesis: Initial Evaluation on a Transfemoral Amputee
,”
Proceedings of the IEEE International Conference on Rehabilitation Robotics
, pp.
638
644
.
24.
Zlatnik
,
D.
,
Steiner
,
B.
, and
Schweitzer
,
G.
, 2002, “
Finite-State Control of a Trans-Femoral (TF) Prosthesis
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
10
(
3
), pp.
408
420
.
25.
Holgate
,
M.
,
Hitt
,
J.
,
Bellman
,
R.
,
Sugar
,
T.
, and
Hollander
,
K.
, 2008, “
The SPARKy (Spring Ankle With Regenerative Kinetics) Project: Choosing a dc Motor Based Actuation Method
,”
Proceedings of the IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics
, pp.
163
168
.
26.
Holgate
,
M.
,
Böhler
,
A.
, and
Sugar
,
T.
, 2008, “
Control Algorithms for Ankle Robots: A Reflection on the State-of-the-Art and Presentation of Two Novel Algorithms
,”
Proceedings of the IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics
, pp.
97
102
.
27.
Holgate
,
M.
,
Sugar
,
T.
, and
Böhler
,
A.
, 2009, “
A Novel Control Algorithm for Wearable Robotics Using Phase Plane Invariants
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
3845
3850
.
28.
Mattos
,
J.
,
Kane
,
E.
, and
Voglewede
,
P.
, 2007, “
Active Component Lower Limb Prosthetic Device Research: Concept and Design
,”
ASME
Paper No. DETC2007-34768.
29.
Norton
,
R.
, 2004,
Design of Machinery: An Introduction to the Synthesis and Analysis of Mechanisms and Machines
,
3rd ed.
,
McGraw-Hill
,
New York
.
31.
Rao
,
S.
, 1996,
Engineering Optimization: Theory and Practice
,
3rd ed.
,
Wiley Interscience
,
New York
.
32.
Winter
,
D.
, 1983, “
Energy Generation and Absorption at the Ankle and Knee During Fast, Natural, and Slow Cadences
,”
Clin. Orthop. Relat. Res.
0009-921X,
175
, pp.
147
154
.
33.
Prince
,
F.
,
Winter
,
D.
,
Sjonnensen
,
G.
,
Powell
,
C.
, and
Wheeldon
,
R.
, 1998, “
Mechanical Efficiency During Gait of Adults With Transtibial Amputation: A Pilot Study Comparing the Sach, Seattle, and Golden-Ankle Prosthetic Feet
,”
J. Rehabil. Res. Dev.
0748-7711,
35
(
2
), pp.
177
185
.
34.
Cummings
,
D. R.
,
Kapp
,
S.
, and
Craig
,
J.
, 2006, “
Prosthetic Foot/Ankle Mechanisms Course. Online course sponsored by the American Academy of Orthotics and Prosthetics
,” Online Learning Center, Project Quantum Leap.
35.
Gitter
,
A.
,
Czerniecki
,
J.
, and
DeGroot
,
D.
, 1991, “
Biomechanical Analysis of the Influence of Prosthetic Feet on Below-Knee Amputee Walking
,”
Am. J. Phys. Med. Rehabil.
0894-9115,
70
(
3
), pp.
142
148
.
36.
Harris Interactive, Inc.
, 2003, “
AOM National Step Survey
,” last accessed 11/6/07.
37.
Mattos
,
J.
, 2007, “
The Design, Building, and Preliminary Testing of a Powered Ankle Prosthesis
,” MS thesis, Department of Mechanical Engineering, University of South Carolina.
You do not currently have access to this content.