This paper presents a new method for the synthesis of spatial mechanism. Using harmonic analysis, the coupler curve and output angle function of spatial mechanism can be described as a series of harmonic characteristic component. For the path generation problem of the spatial mechanism, a technique of normalization processing eliminates the effects of scale, translation, and rotation; in other words, the harmonic characteristic component of the coupler curve is just determined by the basic dimensional type of spatial mechanism but not by the real dimension and the installing position. The numerical atlas database of coupler curve or output angle function of spatial mechanism can be created by the harmonic characteristic components and associated basic dimensional type of spatial mechanism. The best suitable basic dimensional type of spatial mechanism for prescribed function can be decided by using fuzzy identification method and numerical atlas database. On the basis of the basic dimensional type and formulas, which compute the coupler point, true size, and installing dimensions of the spatial mechanism, the dimension synthesis of the spatial mechanism is made possible. This paper takes the RSSR mechanism and RRSS mechanism as an example to illustrate the analysis process and application of this method.

1.
Bagci
,
C.
, 1984, “
Geometric Methods for the Synthesis of Spherical Mechanisms for the Generation of Functions, Paths and Rigid-Body Positions Using Conformal Projections
,”
Mech. Mach. Theory
0094-114X,
19
(
1
), pp.
113
127
.
2.
Tong
,
S. H.
, and
Chiang
,
C. H.
, 1992, “
Syntheses of Planar and Spherical Four-Bar Path Generators by the Pole Method
,”
Mech. Mach. Theory
0094-114X,
27
(
2
), pp.
143
155
.
3.
Chen
,
P.
, 1969, “
An Analytical Investigation of Infinitesimal Spatial Motion Theory and Its Application to Three-Dimensional Linkages
,” Ph.D. dissertation, Stanford University.
4.
Chen
,
P.
, and
Roth
,
B.
, 1969, “
Design Equations for the Finitely and Infinitesimally Separated Position Synthesis of Binary Links and Combined Link Chains
,”
ASME J. Eng. Ind.
0022-0817,
91
(
1
), pp.
209
218
.
5.
Suh
,
C. H.
, 1966, “
Synthesis and Analysis of Space Mechanisms With Use of the Displacement Matrix
,” Ph.D. dissertation, University of California, Berkeley, CA.
6.
Suh
,
C. H.
, 1968, “
Design of Space Mechanisms for Function Generation
,”
ASME J. Eng. Ind.
0022-0817,
90
(
3
), pp.
507
512
.
7.
Wilson
,
J. T.
, 1965, “
Analytical Kinematic Synthesis by Finite Displacements
,”
ASME J. Eng. Ind.
0022-0817,
87
(
2
), pp.
161
169
.
8.
Ting
,
K. L.
, and
Branch
,
D. X.
, 1994, “
Mobility Criteria, and Classification of RSSR and Other Bimodal Linkages
,”
1994 ASME Mechanisms Conference, Mechanism Synthesis and Analysis
, Vol.
70
, pp.
303
310
.
9.
Su
,
H. J.
,
Collins
,
C. L.
, and
McCarthy
,
J. M.
, 2002, “
Classification of RRSS Linkages
,”
Mech. Mach. Theory
0094-114X,
37
, pp.
1413
1433
.
10.
Zhang
,
W. J.
, and
Zhang
,
D.
, 1993, “
Conditions of Crank Existence for a Particular Case of the RSSR Linkage
,”
Mech. Mach. Theory
0094-114X,
28
(
6
), pp.
845
850
.
11.
Ting
,
K. L.
, and
Zhu
,
J.
, 2005, “
On Realization of Mechanisms With Spherical Joints
,”
ASME J. Mech. Des.
0161-8458,
127
(
5
), pp.
924
930
.
12.
Russell
,
K.
, and
Sodhi
,
R. S.
, 2002, “
Instant Screw Axis Point Synthesis of the RRSS Mechanism
,”
Mech. Mach. Theory
0094-114X,
37
, pp.
1117
1126
.
13.
Russell
,
K.
, and
Sodhi
,
R. S.
, 2001, “
Kinematic Synthesis of Adjustable RRSS Mechanisms for Multi-Phase Motion Generation
,”
Mech. Mach. Theory
0094-114X,
36
, pp.
939
952
.
14.
Russell
,
K.
, and
Sodhi
,
R. S.
, 2002, “
Kinematic Synthesis of RRSS Mechanisms for Multi-Phase Motion Generation With Tolerances
,”
Mech. Mach. Theory
0094-114X,
37
, pp.
279
294
.
15.
Saka
,
Z.
, 1996, “
The RSSR Mechanisms With Partially Constant Transmission Angle
,”
Mech. Mach. Theory
0094-114X,
31
(
6
), pp.
763
769
.
16.
Lakshminarayana
,
K.
, and
Rao
,
L. V. B.
, 1984, “
Graphical Synthesis of the RSSR Crank-Rocker Mechanism
,”
Mech. Mach. Theory
0094-114X,
19
(
3
), pp.
331
336
.
17.
Dhall
,
S.
, and
Kramer
,
S. N.
, 1988, “
Computer-Aided Design of the RSSR Function Generating Spatial Mechanism Using the Selective Precision Synthesis Method
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
110
, pp.
378
382
.
18.
Rao
,
L. V. B.
, and
Lakshminarayana
,
K.
, 1984, “
Optimal Designs of the RSSR Crank-Rocker Mechanism—I. General Time Ratio
,”
Mech. Mach. Theory
0094-114X,
19
(
4–5
), pp.
431
441
.
19.
Lakshminarayana
,
K.
, and
Rao
,
L. V. B.
, 1984, “
Optimal Designs of the RSSR Crank-Rocker Mechanism—II. Unit Time Ratio and Limits of Capability
,”
Mech. Mach. Theory
0094-114X,
19
(
4–5
), pp.
443
447
.
20.
Chu
,
J. K.
, and
Cao
,
W. Q.
, 1992, “
A New Method of Dimension Analysis and Synthesis About Planar Linkage Function Generators— Frequency Analyzing Method Curves
,”
J. Mech. Sci. Technol.
1738-494X,
43
(
3
), pp.
7
13
.
21.
Chu
,
J. K.
, and
Cao
,
W. Q.
, 1993, “
Synthesis of Coupler Curves of Planar Four-Bar Linkages Through Fast Fourier Transform
,”
Chin. J. Mech. Eng.
0577-6686,
29
(
5
), pp.
117
122
.
22.
Chu
,
J. K.
, and
Wang
,
L. D.
, 2004, “
Relationship Between Properties of Coupler Curve and Link’s Dimensions in 4-Bar Mechanisms
,”
Sci. China, Ser. E: Technol. Sci.
1006-9321,
34
(
7
). pp.
753
762
.
23.
Wu
,
X.
, and
Chu
,
J. K.
, 1998, “
Dimensional Synthesis for Planar 4-Bar Path Generator With Prescribed Timing
,”
J. Mech. Sci. Technol.
1738-494X,
17
(
6
), pp.
885
888
.
24.
McGarva
,
J. R.
, 1994, “
Rapid Search and Selection of Path Generating Mechanisms From a Library
,”
Mech. Mach. Theory
0094-114X,
29
(
2
), pp.
223
235
.
25.
Huo
,
J. P.
, and
Cao
,
W. Q.
, 1990, “
Fuzzy Mathematics Method for Locus Synthesis of Planer Four-Bar Linkage
,”
Chin. J. Mech. Eng.
0577-6686,
3
(
1
), pp.
23
28
.
26.
Sandor
,
G. N.
, and
Erdman
,
A. G.
, 1984,
Advanced Mechanism Design: Analysis and Synthesis
,
Prentice-Hall
,
New Jersey
, Vol.
2
.
27.
Barker
,
C. R.
, and
Jeng
,
Y. R.
, 1985, “
Range of the Six Fundamental Position Angles of a Planar Four-Bar Mechanism
,”
Mech. Mach. Theory
0094-114X,
20
(
4
), pp.
329
344
.
28.
Freudenstein
,
F.
, 1959, “
Harmonic Analysis of Crank-and-Rocker Mechanisms With Application
,”
ASME J. Appl. Mech.
0021-8936,
12
, pp.
673
675
.
29.
Weaver
,
H. J.
, 1988,
Theory of Discrete and Continuous Fourier Analysis
,
Wiley
,
New York
.
30.
Shirazi
,
K. H.
, 2007, “
Computer Modelling and Geometric Construction for Four-Point Synthesis of 4R Spherical Linkages
,”
Appl. Math. Model.
0307-904X,
31
(
9
), pp.
1874
1888
.
31.
Zhou
,
H.
, and
Ting
,
K. L.
, 2009, “
Geometric Modeling and Synthesis of Spatial Multimaterial Compliant Mechanisms and Structures Using Three-Dimensional Multilayer Wide Curves
,”
ASME J. Mech. Des.
0161-8458,
131
(
1
), p.
011005
.
32.
Russell
,
K.
,
Shen
,
Q.
,
Lee
,
W. T.
, and
Sodhi
,
R. S.
, 2009, “
On the Synthesis of Spatial RRSS Motion Generators With Prescribed Coupler Loads
,”
Journal of Advanced Mechanical Design, Systems, and Manufacturing
,
3
(
3
), pp.
236
244
.
33.
Mundo
,
D.
,
Liu
,
J. Y.
, and
Yan
,
H. S.
, 2006, “
Optimal Synthesis of Cam-Linkage Mechanisms for Precise Path Generation
,”
ASME J. Mech. Des.
0161-8458,
128
(
6
), pp.
1253
1260
.
34.
Zhang
,
L. P.
, and
Sheng
,
D. J.
, 2009, “
Reconfiguration of Spatial Metamorphic Mechanisms
,”
ASME J. Mech. Rob.
1942-4302,
1
(
1
), p.
011012
.
35.
Sun
,
J. W.
, and
Chu
,
J. K.
, 2009, “
Fourier Method to Function Synthesis of an RCCC Mechanism
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
223
, pp.
503
513
.
36.
Rao
,
N. M.
, and
Rao
,
K. M.
, 2006, “
Multi-Position Dimensional Synthesis of a Spatial 3-RPS Parallel Manipulator
,”
ASME J. Mech. Des.
0161-8458,
128
(
4
), pp.
815
819
.
37.
Rao
,
N. M.
, and
Rao
,
K. M.
, 2009, “
Dimensional Synthesis of a Spatial 3-RPS Parallel Manipulator for a Prescribed Range of Motion of Spherical Joints
,”
Mech. Mach. Theory
0094-114X,
44
(
2
), pp.
477
486
.
38.
Hernandez
,
S.
,
Bai
,
S.
, and
Angeles
,
J.
, 2006, “
The Design of a Chain of Spherical Stephenson Mechanisms for a Gearless Robotic Pitch-Roll Wrist
,”
ASME J. Mech. Des.
0161-8458,
128
(
2
), pp.
422
429
.
39.
Lee
,
E.
,
Mavroidis
,
C.
, and
Merlet
,
J. P.
, 2004, “
Five Precision Point Synthesis of Spatial RRR Manipulators Using Interval Analysis
,”
ASME J. Mech. Des.
0161-8458,
126
(
5
), pp.
842
849
.
40.
Hong
,
M. B.
, and
Choir
,
Y. J.
, 2009, “
Screw System Approach to Physical Realization of Stiffness Matrix With Arbitrary Rank
,”
ASME J. Mech. Rob.
1942-4302,
1
(
2
), p.
021007
.
41.
Perez
,
A.
, and
McCarthy
,
J. M.
, 2003, “
Dimensional Synthesis of Bennett Linkages
,”
ASME J. Mech. Des.
0161-8458,
125
(
1
), pp.
98
104
.
42.
Soh
,
G. S.
, and
Michael
,
M. J.
, 2009, “
Parametric Design of a Spherical Eight-Bar Linkage Based on a Spherical Parallel Manipulator
,”
ASME J. Mech. Rob.
1942-4302,
1
(
1
), p.
011004
.
You do not currently have access to this content.