In this paper, we present an interactive, visual design approach for the dimensional synthesis of planar 6R single-loop closed chains for a given rational motion using constraint manifold modification. This approach is implemented in an interactive software tool that provides mechanism designers with an intuitive way to determine the parameters of planar mechanisms, and in the process equips them with an understanding of the design process. The theoretical foundation of this work is based on representing planar displacements with planar quaternions, which can be seen as points in a special higher dimensional projective space (called the image space), and on formulating the kinematic constraints of closed chains as algebraic surfaces in the image space. Kinematic constraints under consideration limit the positions and orientation of the coupler in its workspace. In this way, a given motion of a mechanism in the Cartesian space maps to a curve in the image space that is limited to stay within the bounds of the algebraic surfaces. Thus, the problem of dimensional synthesis is reduced to determine the parameters of equations that describe algebraic surfaces. We show that the interactive approach presented here is general in nature, and can be easily used for the dimensional synthesis of any mechanism for which kinematic constraints can be expressed algebraically. The process of designing is fast, intuitive, and especially useful when a numerical optimization based approach would be computationally demanding and mathematically difficult to formulate. This simple approach also provides a basis for students and early designers to learn and understand the process of mechanism design by simple geometric manipulations.

1.
Sandor
,
G. N.
, and
Erdman
,
A. G.
, 1997,
Advanced Mechanism Design: Analysis and Synthesis
, Vol.
2
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
2.
Suh
,
C. H.
, and
Radcliffe
,
C. W.
, 1978,
Kinematics and Mechanism Design
,
Wiley
,
New York
.
3.
McCarthy
,
J. M.
, 2000,
Geometric Design of Linkages
,
Springer-Verlag
,
New York
.
4.
Rubel
,
A. J.
, and
Kaufman
,
R. E.
, 1977, “
Kinsyn III: A New Human-Engineered System for Interactive Computer-Aided Design of Planar Linkages
,”
ASME J. Eng. Ind.
0022-0817,
99
, pp.
440
448
.
5.
Erdman
,
A. G.
, and
Gustafson
,
J. E.
, 1981, “
Lincages: Linkage Interactive Computer Analysis and Graphically Enhanced Synthesis Packages
,” ASME Design Engineering Technical Conferences, Paper No. 77-DET-5.
6.
Erdman
,
A. G.
, and
Riley
,
D.
, 1981, “
Computer-Aided Linkage Design Using the Lincages Package
,”
ASME Design Engineering Technical Conferences
,
ASME
,
New York
, Paper No. 81-DET-121.
7.
Kihonge
,
J.
,
Vance
,
J.
, and
Larochelle
,
P.
, 2001, “
Spatial Mechanism Design in Virtual Reality With Networking
,”
ASME 2001 Design Engineering Technical Conferences
.
8.
Larochelle
,
P. M.
, 1998, “
Spades: Software for Synthesizing Spatial 4C Linkages
,”
ASME Design Engineering Technical Conferences (DETC)
.
9.
Larochelle
,
P. M.
,
Dooley
,
A. P.
,
Murray
,
A. P.
, and
McCarthy
,
J. M.
, 1993, “
Sphinx: Software for Synthesizing Spherical 4R Mechanisms
,”
NSF Design and Manufacturing Systems Conference
, pp.
607
611
.
10.
Ruth
,
D.
, and
McCarthy
,
J. M.
, 1997, “
Sphinxpc: An Implementation of Four Position Synthesis for Planar and Spherical 4R Linkages
,”
ASME Design Engineering Technical Conferences (DETC)
.
11.
Tse
,
D.
, and
Larochelle
,
P. M.
, 1999, “
Osiris: A New Generation Spherical and Spatial Mechanism CAD Program
,”
1999 Florida Conference on Recent Advancements in Robotics
.
12.
Perez
,
A.
, and
McCarthy
,
J. M.
, 2000, “
Dimensional Synthesis of Spatial RR Robots
,”
Advances in Robot Kinematics
,
Kluwer
,
The Netherlands
, pp.
93
102
.
13.
Su
,
H.
, and
McCarthy
,
J. M.
, 2001, “
Classification of Designs for RRSS Linkages
,”
ASME Design Engineering Technical Conferences
.
14.
Su
,
H.
,
Collins
,
C.
, and
McCarthy
,
J. M.
, 2002, “
An Extensible Java Applet for Spatial Linkage Synthesis
,”
2002 ASME Design Engineering Technical Conferences
,
ASME
,
New York
.
17.
Bottema
,
O.
, and
Roth
,
B.
, 1979,
Theoretical Kinematics
,
North-Holland
,
Amsterdam
.
18.
McCarthy
,
J. M.
, 1990,
Introduction to Theoretical Kinematics
,
MIT
,
Cambridge, MA
.
19.
Ravani
,
B.
, and
Roth
,
B.
, 1983, “
Motion Synthesis Using Kinematic Mappings
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
105
(
3
), pp.
460
467
.
20.
Ravani
,
B.
, and
Roth
,
B.
, 1984, “
Mappings of Spatial Kinematics
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
106
(
3
), pp.
341
347
.
21.
Ge
,
Q. J.
, and
Ravani
,
B.
, 1994, “
Computer-Aided Geometric Design of Motion Interpolants
,”
ASME J. Mech. Des.
0161-8458,
116
(
3
), pp.
756
762
.
22.
Ge
,
Q. J.
, and
Ravani
,
B.
, 1994, “
Geometric Construction of Bezier Motions
,”
ASME J. Mech. Des.
0161-8458,
116
(
3
), pp.
749
755
.
23.
Jüttler
,
B.
, and
Wagner
,
M. G.
, 1996, “
Computer-Aided Design With Spatial Rational B-Spline Motions
,”
ASME J. Mech. Des.
0161-8458,
118
(
2
), pp.
193
201
.
24.
Wagner
,
M. G.
, 1994, “
A Geometric Approach to Motion Design
,” Ph.D. thesis, Technische Universität, Wien.
25.
Röschel
,
O.
, 1998, “
Rational Motion Design—A Survey
,”
Comput.-Aided Des.
0010-4485,
30
(
3
), pp.
169
178
.
26.
Purwar
,
A.
,
Chi
,
X.
, and
Ge
,
Q. J.
, 2008, “
Automatic Fairing of Two-Parameter Rational B-Spline Motion
,”
ASME J. Mech. Des.
0161-8458,
130
(
1
), p.
011003
.
27.
Purwar
,
A.
, and
Ge
,
Q. J.
, 2005, “
On the Effect of Dual Weights in Computer Aided Design of Rational Motions
,”
ASME J. Mech. Des.
0161-8458,
127
(
5
), pp.
967
972
.
28.
Blaschke
,
W.
, 1911, “
Euklidische kinematik und nichteuklidische geometrie
,”
Zeitschr. Math. Phys.
,
60
, pp.
61
91
.
29.
Grunwald
,
J.
, 1911, “
Ein abbildungsprinzip, welches die ebene geometrie und kinematik mit der raumlichen geometrie verknupft
,”
Sitzber. Ak. Wiss. Wien
,
120
, pp.
677
741
.
30.
Bodduluri
,
R. M. C.
, and
McCarthy
,
J. M.
, 1992, “
Finite Position Synthesis Using the Image Curve of a Spherical Four-Bar Motion
,”
ASME J. Mech. Des.
0161-8458,
114
(
1
), pp.
55
60
.
31.
Bodduluri
,
R.
, 1990, “
Design and Planned Movement of Multi-Degree of Freedom Spatial Mechanisms
,” Ph.D. thesis, Univeristy of California, Irving.
32.
Larochelle
,
P.
, 1994, “
Design of Cooperating Robots and Spatial Mechanisms
,” Ph.D. thesis, Univeristy of California, Irving.
33.
Burmester
,
L. E. H.
, 1888,
Lehrbuch der kinematik
,
A. Felix
,
Leipzig
.
34.
Hayes
,
M. J. D.
,
Luu
,
T.
, and
Chang
,
X. -W.
, 2004, “
Kinematic Mapping Application to Approximate Type and Dimension Synthesis of Planar Mechanisms
,”
9th Advances in Robotic Kinematics
,
Kluwer
,
Dordrecht
.
35.
Brunnthaler
,
K.
,
Schrocker
,
H.
, and
Husty
,
M.
, 2006, “
Synthesis of Spherical Four-Bar Mechanisms Using Spherical Kinematic Mapping
,”
Advances in Robot Kinematics
,
Springer
,
The Netherlands
.
36.
Venkataramanujam
,
V.
, and
Larochelle
,
P.
, 2007, “
Approximate Motion Synthesis of Spherical Kinematic Chains
,”
Proceedings of the ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering
, Paper No. DETC2007-34372.
37.
Jin
,
Z.
, and
Ge
,
Q. J.
, 2007, “
Computer Aided Synthesis of Piecewise Rational Motion for Planar 2R and 3R Robot Arms
,”
ASME J. Mech. Des.
0161-8458,
129
(
10
), pp.
1031
1036
.
38.
Jin
,
Z.
, and
Ge
,
Q. J.
, 2007, “
Rational Motion Interpolation Under Kinematic Constraints of Planar 6R Closed Chain
,”
ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
ASME
,
New York
, Paper No. DETC2006-99650.
39.
Purwar
,
A.
,
Zhe
,
J.
, and
Ge
,
Q. J.
, 2008, “
Computer Aided Synthesis of Piecewise Rational Motions for Spherical 2R and 3R Robot Arms
,”
ASME J. Mech. Des.
0161-8458,
130
(
11
), p.
112301
.
40.
Purwar
,
A.
,
Jin
,
Z.
, and
Ge
,
Q. J.
, 2008, “
Rational Motion Interpolation Under Kinematic Constraints of Spherical 6R Closed Chains
,”
ASME J. Mech. Des.
0161-8458,
130
(
6
), p.
062301
.
41.
Purwar
,
A.
,
Jin
,
Z.
, and
Ge
,
Q. J.
, 2008, “
Computer Aided Synthesis of Rational Motion Under Kinematic Constraints of Spatial SS Open Chains
,”
ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
.
42.
Ge
,
Q. J.
, 1990, “
Kinematics Constraints as Algebraic Manifolds in the Clifford Algebra of Projective Three Space
,” Ph.D. thesis, Univeristy of California, Irving.
43.
Larochelle
,
P.
, and
McCarthy
,
J. M.
, 1994, “
Design of Spatial 4C Mechanisms for Rigid Body Guidance
,”
Proceedings of the 1994 ASME Mechanisms Conference
, pp.
135
142
.
44.
Murray
,
A. P.
,
Pierrot
,
F.
,
Dauchez
,
P.
, and
McCarthy
,
J. M.
, 1997, “
A Planar Quaternion Approach to the Kinematic Synthesis of a Parallel Manipulator
,”
Robotica
0263-5747,
15
, pp.
361
365
.
45.
Perez
,
A.
, and
McCarthy
,
J. M.
, 2004, “
Dual Quaternion Synthesis of Constrained Robotic Systems
,”
ASME J. Mech. Des.
0161-8458,
126
(
3
), pp.
425
435
.
46.
Hamilton
,
W. R.
, 1899,
Elements of Quaternions
, Vols.
1–2
,
Longmans, Green & Co.
,
New York
.
47.
Hamilton
,
W. R.
, 1853,
Lectures on Quaternions
,
Hodges Smith & Co.
,
Dublin, Ireland
.
48.
Eberly
,
D.
, 2002, “
Rotation Representations and Performance Issue
,” Magic Software, Inc., Chapel Hill, NC.
49.
Farin
,
G.
, 1996,
Curves and Surfaces for Computer-Aided Geometric Design: A Practical Guide
, 4th ed.,
Academic
,
New York
.
50.
Hoschek
,
J.
, and
Lasser
,
D.
, 1993,
Fundamentals of Computer Aided Geometric Design
,
A K Peters
,
Wellesley, MA
.
51.
Piegl
,
L.
, and
Tiller
,
W.
, 1995,
The NURBS Book
,
Springer
,
Berlin
.
You do not currently have access to this content.