Modeling protein molecules as kinematic chains provides the foundation for developing powerful approaches to the design, manipulation, and fabrication of peptide based molecules and devices. Nevertheless, these models possess a high number of degrees of freedom (DOFs) with considerable computational implications. On the other hand, real protein molecules appear to exhibit a much lower mobility during the folding process than what is suggested by existing kinematic models. The key contributor to the lower mobility of real proteins is the formation of hydrogen bonds during the folding process. In this paper, we explore the pivotal role of hydrogen bonds in determining the structure and function of the proteins from the point of view of mechanical mobility. The existing geometric criteria on the formation of hydrogen bonds are reviewed and a new set of geometric criteria is proposed. We show that the new criteria better correlate the number of predicted hydrogen bonds with those established by biological principles than other existing criteria. Furthermore, we employ established tools in kinematics mobility analysis to evaluate the internal mobility of protein molecules and to identify the rigid and flexible segments of the proteins. Our results show that the developed procedure significantly reduces the DOF of the protein models, with an average reduction of 94%. Such a dramatic reduction in the number of DOF can have enormous computational implications in protein folding simulations.

1.
Langer
,
R.
, 1998, “
Drug Delivery and Targeting
,”
Nature (London)
0028-0836,
392
, pp.
5
10
.
2.
Kiser
,
P. F.
,
Wilson
,
G.
, and
Needham
,
D.
, 1998, “
A Synthetic Mimic of the Secretory Granule for Drug Delivery
,”
Nature (London)
0028-0836,
394
(
6692
), pp.
459
62
.
3.
Ong
,
S.
,
Liu
,
H.
,
Qiu
,
X.
,
Bhat
,
G.
, and
Pidgeon
,
C.
, 1995, “
Membrane Partition Coefficients Chromatographically Measured Using Immobilized Artificial Membrane Surfaces
,”
Anal. Chem.
0003-2700,
67
(
4
), pp.
755
62
.
4.
Kuhn
,
L. A.
, and
Thorpe
,
M. F.
, 2001, “
Introduction and Foreword to the Special Issue on Protein Flexibility and Folding
,”
J. Mol. Graphics Modell.
1093-3263,
19
(
1
), pp.
1
2
.
5.
2009,
Protein Folding and Misfolding: Neurodegenerative Diseases
(
Focus on Structural Biology
),
J.
Ovadi
and
F.
Orosz
, eds.,
Springer
,
New York
, Vol.
7
.
6.
Kern
,
D.
, and
Zuiderweg
,
E. R.
, 2003, “
The Role of Dynamics in Allosteric Regulation
,”
Curr. Opin. Struct. Biol.
0959-440X,
13
(
6
), pp.
748
757
.
7.
Geeves
,
M. A.
, and
Holmes
,
K. C.
, 1999, “
Structural Mechanism of Muscle Contraction
,”
Annu. Rev. Biochem.
0066-4154,
68
, pp.
687
728
.
8.
Liu
,
J.
,
Zhang
,
J.
,
Yang
,
Y.
,
Huang
,
H.
,
Shen
,
W.
,
Hu
,
Q.
,
Wang
,
X.
,
Wu
,
J.
, and
Shi
,
Y.
, 2008, “
Conformational Change Upon Ligand Binding and Dynamics of the PDZ Domain From Leukemia-Associated Rho Guanine Nucleotide Exchange Factor
,”
Protein Sci.
0961-8368,
17
, pp.
1003
1014
.
9.
Zheng
,
W.
,
Brooks
,
B. R.
, and
Hummer
,
G.
, 2007, “
Protein Conformational Transitions Explored by Mixed Elastic Network Models
,”
Proteins: Struct., Funct., Bioinf.
1097-0134,
69
(
1
), pp.
43
57
.
10.
Chirikjian
,
G. S.
,
Kazerounian
,
K.
, and
Mavroidis
,
C.
, 2005, “
Analysis and Design of Protein Based Nanodevices: Challenges and Opportunities in Mechanical Design
,”
ASME J. Mech. Des.
0161-8458,
127
(
4
), pp.
695
698
.
11.
Madden
,
C.
,
Bohnenkamp
,
P.
,
Kazerounian
,
K.
, and
Ilieş
,
H. T.
, 2008,
Interdisciplinary Applications of Kinematics
,
A.
Kecskeméthy
, ed.,
Elsevier
,
New York
.
12.
Branden
,
C.
, and
Tooze
,
J.
, 1999,
Introduction to Protein Structure
,
2nd ed.
,
Garland
,
New York, NY
.
13.
Wales
,
T. E.
, and
Fitzgerald
,
M. C.
, 2001, “
The Energetic Contribution of Backbone-Backbone Hydrogen Bonds to the Thermodynamic Stability of a Hyperstable p22 Arc Repressor Mutant
,”
J. Am. Chem. Soc.
0002-7863,
123
(
31
), pp.
7709
10
.
14.
Perutz
,
M. F.
, and
Raidt
,
H.
, 1975, “
Stereochemical Basis of Heat Stability in Bacterial Ferredoxins and in Haemoglobin
,”
Nature (London)
0028-0836,
255
, pp.
256
259
.
15.
Grütter
,
M. G.
,
Hawkes
,
R. B.
, and
Mattews
,
B. W.
, 1979, “
Molecular Basis of Thermostability in the Lysozyme From Bacteriophage t4
,”
Nature (London)
0028-0836,
277
, pp.
667
669
.
16.
Chatake
,
T.
,
Higuchi
,
Y.
,
Mizuno
,
N.
,
Tanaka
,
I.
,
Niimura
,
N.
, and
Morimoto
,
Y.
, 2008, “
Hydrogen Bonds of dsrd Protein Revealed by Neutron Crystallography
,”
J. Synchrotron Radiat.
0909-0495,
15
, pp.
277
280
.
17.
Hinsen
,
K.
, 2007, “
Structural Flexibility in Proteins: Impact of the Crystal Environment
,”
Bioinformatics
1367-4803,
24
(
4
), pp.
521
528
.
18.
Kumar
,
S.
,
Wolfson
,
H. J.
, and
Nussinov
,
R.
, 2001, “
Protein Flexibility and Electrostatic Interactions
,”
IBM J. Res. Dev.
0018-8646,
45
(
3–4
), pp.
499
512
.
19.
Najmanovich
,
R.
,
Kuttner
,
J.
,
Sobolev
,
V.
, and
Edelman
,
M.
, 2000, “
Side-Chain Flexibility in Proteins Upon Ligand Binding
,”
Proteins: Struct., Funct., Genet.
0087-3585,
39
(
3
), pp.
261
268
.
20.
Carlson
,
H. A.
, and
McCammon
,
J. A.
, 2000, “
Accommodating Protein Flexibility in Computational Drug Design
,”
Mol. Pharmacol.
0026-895X,
57
(
2
), pp.
213
218
.
21.
Nichols
,
W. L.
,
Rose
,
G. D.
,
Ten Eyck
,
L. F.
, and
Zimm
,
B. H.
, 1995, “
Rigid Domains in Proteins: An Algorithmic Approach to Their Identification
,”
Proteins
0887-3585,
23
(
1
), pp.
38
48
.
22.
Wriggers
,
W.
, and
Schulten
,
K.
, 1997, “
Protein Domain Movements: Detection of Rigid Domains and Visualization of Hinges in Comparisons of Atomic Coordinates
,”
Proteins
0887-3585,
29
(
1
), pp.
1
14
.
23.
Doruker
,
P.
,
Bahara
,
I.
,
Baysalb
,
C.
, and
Erman
,
B.
, 2002, “
Collective Deformations in Proteins Determined by a Mode Analysis Molecular Dynamics Trajectories
,”
Polymer
0032-3861,
43
, pp.
431
439
.
24.
Jacobs
,
D. J.
,
Rader
,
A. J.
,
Kuhn
,
L. A.
, and
Thorpe
,
M. F.
, 2001, “
Protein Flexibility Predictions Using Graph Theory
,”
Proteins
0887-3585,
44
(
2
), pp.
150
65
.
25.
Ceccarelli
,
C.
,
Jeffrey
,
G. A.
, and
Taylor
,
R.
, 1981, “
A Survey of O–H…O Hydrogen Bond Geometries Determined by Neutron Diffraction
,”
J. Mol. Struct.
0022-2860,
70
, pp.
255
271
.
26.
Grabowski
,
S. J.
, 2004, “
Hydrogen Bonding Strength-Measures Based on Geometric and Topological Parameters
,”
J. Phys. Org. Chem.
0894-3230,
17
(
1
), pp.
18
31
.
27.
Mitra
,
J.
, and
Ramakrishnan
,
C.
, 1977, “
Analysis of O–H…O Hydrogen Bonds
,”
Int. J. Pept. Protein Res.
0367-8377,
9
, pp.
27
48
.
28.
Mitra
,
J.
, and
Ramakrishnan
,
C.
, 1981, “
Studies of Hydrogen Bonds
,”
Int. J. Pept. Protein Res.
0367-8377,
17
, pp.
401
411
.
29.
Murray-Rust
,
P.
, and
Glusker
,
J.
, 1984, “
Directional Hydrogen Bonding to sp2- and sp3-Hybridized Oxygen Atoms and Its Relevance to Ligand-Macromolecule Interactions
,”
J. Am. Chem. Soc.
0002-7863,
106
(
4
), pp.
1018
1025
.
30.
Taylor
,
R.
,
Kennard
,
O.
, and
Versichel
,
W.
, 1983, “
Geometry of the N–H…O=C Hydrogen Bond. 1. Lone-Pair Directionality
,”
J. Am. Chem. Soc.
0002-7863,
105
(
18
), pp.
5761
5766
.
31.
Taylor
,
R.
, and
Kennard
,
O.
, 1984, “
Hydrogen-Bond Geometry in Organic Crystals
,”
Acc. Chem. Res.
0001-4842,
17
, pp.
320
326
.
32.
Lutz
,
H. D.
, 2003, “
Structure and Strength of Hydrogen Bonds in Inorganic Solids
,”
J. Mol. Struct.
0022-2860,
646
(
1–3
), pp.
227
236
.
33.
Baker
,
E. N.
, and
Hubbard
,
R. E.
, 1984, “
Hydrogen Bonding in Globular Proteins
,”
Prog. Biophys. Mol. Biol.
0079-6107,
44
(
2
), pp.
97
179
.
34.
Eswar
,
N.
, and
Ramakrishnan
,
C.
, 2000, “
Deterministic Features of Side-Chain Main-Chain Hydrogen Bonds in Globular Protein Structures
,”
Protein Eng.
0269-2139,
13
(
4
), pp.
227
238
.
35.
Kortemme
,
T.
,
Morozov
,
A. V.
, and
Baker
,
D.
, 2003, “
An Orientation-Dependent Hydrogen Bonding Potential Improves Prediction of Specificity and Structure for Proteins and Protein-Protein Complexes
,”
J. Mol. Biol.
0022-2836,
326
(
4
), pp.
1239
59
.
36.
Panasik
,
N.
,
Fleming
,
P. J.
, and
Rose
,
G. D.
, 2005, “
Hydrogen-Bonded Turns in Proteins: The Case for a Recount
,”
Protein Sci.
0961-8368,
14
(
11
), pp.
2910
2914
.
37.
Alexandrescu
,
A. T.
,
Snyder
,
D. R.
, and
Abildgaard
,
F.
, 2001, “
NMR of Hydrogen Bonding in Cold-Shock Protein A and an Analysis of the Influence of Crystallographic Resolution on Comparisons of Hydrogen Bond Lengths
,”
Protein Sci.
0961-8368,
10
(
9
), pp.
1856
1868
.
38.
Flores
,
M.
,
Isaacson
,
R.
,
Abresch
,
E.
,
Calvo
,
R.
,
Lubitz
,
W.
, and
Feher
,
G.
, 2007, “
Protein-Cofactor Interactions in Bacterial Reaction Centers From Rhodobacter Sphaeroides R-26: II. Geometry of the Hydrogen Bonds to the Primary Quinone Q(A)(-) by H-1 and H-2 ENDOR Spectroscopy
,”
Biophys. J.
0006-3495,
92
(
2
), pp.
671
682
.
39.
Langkilde
,
A.
,
Kristensen
,
S. M.
,
Lo Leggio
,
L.
,
Molgaard
,
A.
,
Jensen
,
J. H.
,
Houk
,
A. R.
,
Poulsen
,
J. C. N.
,
Kauppinen
,
S.
, and
Larsen
,
S.
, 2008, “
Short Strong Hydrogen Bonds in Proteins: A Case Study of Rhamnogalacturonan Acetylesterase
,”
Acta Crystallogr., Sect. D: Biol. Crystallogr.
0907-4449,
64
, pp.
851
863
.
40.
Artymiuk
,
P. J.
, and
Blake
,
C. C.
, 1981, “
Refinement of Human Lysozyme at 1.5 a Resolution Analysis of Non-Bonded and Hydrogenbond Interactions
,”
J. Mol. Biol.
0022-2836,
152
(
4
), pp.
737
62
.
41.
Singh
,
J.
,
Thornton
,
J. M.
,
Snarey
,
M.
, and
Campbell
,
S. F.
, 1987, “
The Geometries of Interacting Arginine-Carboxyls in Proteins
,”
FEBS Lett.
0014-5793,
224
(
1
), pp.
161
71
.
42.
Fernandez
,
A.
, and
Berry
,
R. S.
, 2002, “
Extent of Hydrogen-Bond Protection in Folded Proteins: A Constraint on Packing Architectures
,”
Biophys. J.
0006-3495,
83
(
5
), pp.
2475
2481
.
43.
Fleming
,
P. J.
, and
Rose
,
G. D.
, 2005, “
Do All Backbone Polar Groups in Proteins Form Hydrogen Bonds?
,”
Protein Sci.
0961-8368,
14
(
7
), pp.
1911
1917
.
44.
Jeffrey
,
G.
, and
Maluszynska
,
H.
, 1982, “
A Survey of Hydrogen Bond Geometries in the Crystal Structure of Amino Acids
,”
Int. J. Biol. Macromol.
0141-8130,
4
, pp.
173
185
.
45.
McDonald
,
I. K.
, and
Thornton
,
J. M.
, 1994, “
Satisfying Hydrogen-Bonding Potential in Proteins
,”
J. Mol. Biol.
0022-2836,
238
(
5
), pp.
777
793
.
46.
Sticke
,
D. F.
,
Presta
,
L. G.
,
Dill
,
K. A.
, and
Rose
,
G. D.
, 1992, “
Hydrogen Bonding in Globular Proteins
,”
J. Mol. Biol.
0022-2836,
226
(
4
), pp.
1143
59
.
47.
Torshin
,
I. Y.
,
Weber
,
I. T.
, and
Harrison
,
R. W.
, 2002, “
Geometric Criteria of Hydrogen Bonds in Proteins and Identification of ‘Bifurcated’ Hydrogen Bonds
,”
Protein Eng.
0269-2139,
15
(
5
), pp.
359
363
.
48.
Xu
,
D.
,
Tsai
,
C. J.
, and
Nussinov
,
R.
, 1997, “
Hydrogen Bonds and Salt Bridges Across Protein-Protein Interfaces
,”
Protein Eng.
0269-2139,
10
(
9
), pp.
999
1012
.
49.
Ackbarow
,
T.
,
Chen
,
X.
,
Keten
,
S.
, and
Buehler
,
M. J.
, 2007, “
Hierarchies, Multiple Energy Barriers, and Robustness Govern the Fracture Mechanics of Alpha-Helical and Beta-Sheet Protein Domains
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
104
(
42
), pp.
16410
16415
.
50.
Jang
,
S.
,
Kim
,
E.
, and
Pak
,
Y.
, 2007, “
Direct Folding Simulation of Alpha-Helices and Beta-Hairpins Based on a Single All-Atom Force Field With an Implicit Solvation Model
,”
Proteins
0887-3585,
66
(
1
), pp.
53
60
.
51.
Pauling
,
L.
,
Corey
,
R. B.
, and
Branson
,
H. R.
, 1951, “
The Structure of Proteins: Two Hydrogen Bonded Helical Configurations of the Polypeptide Chain
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
37
, pp.
205
211
.
52.
Pauling
,
L.
, and
Corey
,
R. B.
, 1951, “
Configurations of Polypeptide Chains With Favored Orientations Around Single Bonds: Two New Pleated Sheets
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
37
, pp.
729
740
.
53.
Kazerounian
,
K.
,
Latif
,
K.
, and
Alvarado
,
C.
, 2005, “
Protofold: A Successive Kinetostatic Compliance Method for Protein Conformation Prediction
,”
ASME J. Mech. Des.
0161-8458,
127
(
4
), pp.
712
717
.
54.
Subramanian
,
R.
, and
Kazerounian
,
K.
, 2007, “
Kinematic Mobility Analysis of Peptide Based Nano-Linkages
,”
Mech. Mach. Theory
0094-114X,
42
(
8
), pp.
903
918
.
55.
Floyd
,
R. W.
, 1967, “
Nondeterministic Algorithms
,”
J. ACM
1535-9921,
14
(
4
), pp.
636
644
.
56.
Brent
,
R. P.
, 1980, “
An Improved Monte Carlo Factorization Algorithm
,”
BIT
0006-3835,
20
(
2
), pp.
176
184
.
57.
Allender
,
E. W.
, and
Klawe
,
M. M.
, 1985, “
Improved Lower Bounds for the Cycle Detection Problem
,”
Theor. Comput. Sci.
0304-3975,
36
(
2–3
), pp.
231
237
.
58.
Gogu
,
G.
, 2005, “
Chebychev-Grbler-Kutzbach’s Criterion for Mobility Calculation of Multi-Loop Mechanisms Revisited Via Theory of Linear Transformations
,”
Eur. J. Mech. A/Solids
0997-7538,
24
(
3
), pp.
427
441
.
You do not currently have access to this content.