Due to Cayley’s theorem the line sΣ (=moving system) spanned by the centers of the spherical joints of a revolute-spherical-spherical-revolute linkage generates a surface of degree 8. In the special case of parallel rotary axes of the R-joints the corresponding ruled surface is only of degree 6. Now the point locus of any point XΣ\{s} is a surface of order 16 (general case) or of order 12 (special case). Hunt (1978, Kinematic Geometry of Mechanisms, Clarendon, Oxford) suggested that the circularity of this so called spin-surface for the general case is 8 and this was later proved. We demonstrate that the circularity of the spin-surface for the special case is 4 instead of 6 as given in the literature (1994, “The (True) Stewart Platform Has 12 Configurations,” Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2160–2165). As a consequence generalized triangular symmetric simplified manipulators (the three rotary axes need not be coplanar) with two parallel rotary joints can have up to 16 solutions instead of 12 (2006, Parallel Robots, 2nd ed., Springer, New York). We show that this upper bound cannot be improved by constructing an example for which the maximal number of assembly modes is reached. Moreover, we list all parallel manipulators of this type where more than 4×2=8 points are located on the imaginary spherical circle.

1.
Robertson
,
G. D.
, and
Torfason
,
L. E.
, 1975, “
The Qeeroid—A New Kinematic Surface
,”
Proceedings of the Fourth World Congress on the Theory of Machines and Mechanisms
, pp.
717
719
.
2.
Fichter
,
E. F.
, and
Hunt
,
K. H.
, 1977, “
Mechanical Couplings - A General Geometrical Theory
,”
ASME J. Eng. Ind.
0022-0817,
99
, pp.
77
81
.
3.
Hunt
,
K. H.
, 1978,
Kinematic Geometry of Mechanisms
,
Clarendon
,
Oxford
.
4.
Hunt
,
K. H.
, 1983, “
Structural Kinematics of In-Parallel-Actuated Robot-Arms
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
105
, pp.
705
712
.
5.
Merlet
,
J. -P.
, 1989, “
Manipulateurs parallèles, 4eme partie: mode d’assemblage et cinématique directe sous forme polynomiale
,” INRIA Technical Report No. 1135.
6.
Lazard
,
D.
, and
Merlet
,
J. -P.
, 1994, “
The (True) Stewart Platform Has 12 Configurations
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
2160
2165
.
7.
Merlet
,
J. -P.
, 2006,
Parallel Robots
,
2nd ed.
,
Springer
,
New York.
8.
Merlet
,
J. -P.
, 1992, “
Direct Kinematics and Assembly Modes of Parallel Manipulators
,”
Int. J. Robot. Res.
0278-3649,
11
(
2
), pp.
150
162
.
9.
Husty
,
M.
, 2000, “
E. Borel’s and R. Bricard’s Papers on Displacements With Spherical Paths and Their Relevance to Self-Motions of Parallel Manipulators
,”
Proceedings of the International Symposium on History of Machines and Mechanisms
,
M.
Ceccarelli
, ed.,
Kluwer
,
Dordrecht, The Netherlands
, pp.
163
172
.
10.
Husty
,
M.
, and
Karger
,
A.
, 2000, “
Self-Motions of Griffis-Duffy Type Platforms
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
7
12
.
11.
Karger
,
A.
, 2008, “
New Self-Motions of Parallel Manipulators
,”
Advances in Robot Kinematics—Analysis and Design
,
J.
Lenarcic
and
P.
Wenger
, eds.,
Springer
,
New York
, pp.
275
282
.
12.
Karger
,
A.
, and
Husty
,
M.
, 1998, “
Classification of All Self-Motions of the Original Stewart-Gough Platform
,”
CAD
0010-4485,
30
, pp.
205
215
.
13.
Bricard
,
R.
, 1897, “
Mémoire sur la théorie de l’octaèdre articulé
,”
J. Math. Pures Appl.
0021-7824,
3
, pp.
113
148
.
14.
Stachel
,
H.
, 1987, “
Zur Einzigkeit der Bricardschen Oktaeder
,”
J. Geom.
0047-2468,
28
, pp.
41
56
.
15.
Stachel
,
H.
, 2002, “
Remarks on Bricard’s Flexible Octahedra of Type 3
,”
Proceedings of the Tenth International Conference on Geometry and Graphics
, pp.
8
12
.
16.
Nawratil
,
G.
, 2009, “
All Planar Parallel Manipulators With Cylindrical Singularity Surface
,”
Mech. Mach. Theory
0094-114X,
44
(
12
), pp.
2179
2186
.
17.
Dietmaier
,
P.
, 1998, “
The Stewart-Gough Platform of General Geometry Can Have 40 Real Postures
,”
Advances in Robot Kinematics: Analysis and Control
,
J.
Lenarcic
and
M. L.
Husty
, eds.,
Kluwer
,
Dordrecht, The Netherlands
, pp.
7
16
.
18.
Arakelian
,
V. H.
, 2007, “
Complete Shaking Force and Shaking Moment Balancing of RSS’R Spatial Linkages
,”
Proc. Inst. Mech. Eng., Part K: Journal of Multi-body Dynamics
1464-4193,
221
(
2
), pp.
303
410
.
19.
Chaudhary
,
H.
, and
Saha
,
S. K.
, 2008, “
An Optimization Technique for the Balancing of Spatial Mechanisms
,”
Mech. Mach. Theory
0094-114X,
43
, pp.
506
522
.
20.
Chung
,
W. -Y.
, 2005, “
Mobility Analysis of RSSR Mechanisms by Working Volume
,”
ASME J. Mech. Des.
0161-8458,
127
, pp.
156
159
.
21.
Lin
,
P. D.
, and
Hsieh
,
J. -F.
, 2007, “
A New Method to Analyze Spatial Binary Mechanisms With Spherical Pairs
,”
ASME J. Mech. Des.
0161-8458,
129
, pp.
455
458
.
22.
Ting
,
K. -L.
, and
Zhu
,
J.
, 2005, “
On Realization of Spherical Joints in RSSR Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
127
, pp.
924
930
.
You do not currently have access to this content.