Abstract

Inspired by human nature, roboticists have conceived robots as tools meant to be flexible, capable of performing a wide variety of tasks. Learning from demonstration methods allow us to “teach” robots the way we would perform tasks, in a versatile and adaptive manner. Dynamic movement primitives (DMP) aims for learning complex behaviors in such a way, representing tasks as stable, well-understood dynamical systems. By modeling movements over the SE(3) group, modeled primitives can be generalized for any robotic manipulator capable of full end-effector 3D movement. In this article, we present a robot-agnostic formulation of discrete DMP based on the dual quaternion algebra, oriented to modeling throwing movements. We consider adapted initial and final poses and velocities, all computed from a projectile kinematic model and from the goal at which the projectile is aimed. Experimental demonstrations are carried out in both a simulated and a real environment. Results support the effectiveness of the improved method formulation.

References

1.
Fleisig
,
G. S.
,
Barrentine
,
S. W.
,
Escamilla
,
R. F.
, and
Andrews
,
J. R.
,
1996
, “
Biomechanics of Overhand Throwing With Implications for Injuries
,”
Sports Med.
,
21
(
6
), pp.
421
437
.
2.
Horst
,
F.
,
Janssen
,
D.
,
Beckmann
,
H.
, and
Schöllhorn
,
W. I.
,
2020
, “
Can Individual Movement Characteristics Across Different Throwing Disciplines be Identified in High-Performance Decathletes?
Front. Psychol.
,
11
, p.
561870
.
3.
Wagner
,
H.
,
Pfusterschmied
,
J.
,
Klous
,
M.
,
von Duvillard
,
S. P.
, and
Müller
,
E.
,
2012
, “
Movement Variability and Skill Level of Various Throwing Techniques
,”
Human Mov. Sci.
,
31
(
1
), pp.
78
90
.
4.
Rossi
,
C.
,
2012
, “
Ancient Throwing Machines: A Method to Calculate Their Performance
,”
Mech. Mach. Theory
,
51
, pp.
1
13
.
5.
Senoo
,
T.
,
Namiki
,
A.
, and
Ishikawa
,
M.
,
2008
, “
High-Speed Throwing Motion Based on Kinetic Chain Approach
,”
2008 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Nice, France
,
Sept. 22–26
, pp.
3206
3211
.
6.
Kober
,
J.
,
Mülling
,
K.
,
Krömer
,
O.
,
Lampert
,
C. H.
,
Schölkopf
,
B.
, and
Peters
,
J.
,
2010
, “
Movement Templates for Learning of Hitting and Batting
,”
2010 IEEE International Conference on Robotics and Automation
,
Anchorage, AK
,
May 3–8
, pp.
853
858
.
7.
Kober
,
J.
,
Wilhelm
,
A.
,
Oztop
,
E.
, and
Peters
,
J.
,
2012
, “
Reinforcement Learning to Adjust Parametrized Motor Primitives to New Situations
,”
Auton. Rob.
,
33
(
4
), pp.
361
379
.
8.
Cohen
,
Y.
,
Bar-Shira
,
O.
, and
Berman
,
S.
,
2021
, “
Motion Adaptation Based on Learning the Manifold of Task and Dynamic Movement Primitive Parameters
,”
Robotica
,
39
(
7
), pp.
1299
1315
.
9.
Zeng
,
A.
,
Song
,
S.
,
Lee
,
J.
,
Rodriguez
,
A.
, and
Funkhouser
,
T.
,
2020
, “
Tossingbot: Learning to Throw Arbitrary Objects With Residual Physics
,”
IEEE Trans. Rob.
,
36
(
4
), pp.
1307
1319
.
10.
Chi
,
C.
,
Xu
,
Z.
,
Pan
,
C.
,
Cousineau
,
E.
,
Burchfiel
,
B.
,
Feng
,
S.
,
Tedrake
,
R.
, and
Song
,
S.
,
2024
, “
Universal Manipulation Interface: In-The-Wild Robot Teaching Without In-The-Wild Robots
,”
Proceedings of Robotics: Science and Systems
,
Delft, Netherlands
.
11.
Ijspeert
,
A. J.
,
Nakanishi
,
J.
,
Hoffmann
,
H.
,
Pastor
,
P.
, and
Schaal
,
S.
,
2013
, “
Dynamical Movement Primitives: Learning Attractor Models for Motor Behaviors
,”
Neural Comput.
,
25
(
2
), pp.
328
373
.
12.
Schaal
,
S.
,
Atkeson
,
C. G.
, and
Vijayakumar
,
S.
,
2002
, “
Scalable Techniques From Nonparametric Statistics for Real Time Robot Learning
,”
Appl. Intell.
,
17
(
1
), pp.
49
60
.
13.
Hoffmann
,
H.
,
Pastor
,
P.
,
Park
,
D.-H.
, and
Schaal
,
S.
,
2009
, “
Biologically-Inspired Dynamical Systems for Movement Generation: Automatic Real-Time Goal Adaptation and Obstacle Avoidance
,”
2009 IEEE International Conference on Robotics and Automation
,
Kobe, Japan
,
May 12–17
, pp.
2587
2592
.
14.
Saveriano
,
M.
,
Abu-Dakka
,
F. J.
,
Kramberger
,
A.
, and
Peternel
,
L.
,
2023
, “
Dynamic Movement Primitives in Robotics: A Tutorial Survey
,”
Int. J. Rob. Res.
,
42
(
13
), pp.
1133
1184
.
15.
Ude
,
A.
,
Nemec
,
B.
,
Petrić
,
T.
, and
Morimoto
,
J.
,
2014
, “
Orientation in Cartesian Space Dynamic Movement Primitives
,”
2014 IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong, China
,
May 31–June 7
, pp.
2997
3004
.
16.
Saveriano
,
M.
,
Franzel
,
F.
, and
Lee
,
D.
,
2020
, “
Merging Position and Orientation Motion Primitives
,”
2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, QC, Canada
,
May 20–24
, pp.
7041
7047
.
17.
Adorno
,
B. V.
, and
Fraisse
,
P.
,
2017
, “
The Cross-Motion Invariant Group and Its Application to Kinematics
,”
IMA J. Math. Control Inf.
,
34
(
4
), pp.
1359
1378
.
18.
Adorno
,
B. V.
,
2017
, “Robot Kinematic Modeling and Control Based on Dual Quaternion Algebra — Part I: Fundamentals,” Working Paper or Preprint.
19.
Zhang
,
R.
,
Hu
,
Y.
,
Zhao
,
K.
, and
Cao
,
S.
,
2021
, “
A Novel Dual Quaternion Based Dynamic Motion Primitives for Acrobatic Flight
,”
2021 5th International Conference on Robotics and Automation Sciences (ICRAS)
,
Wuhan, China
, pp.
165
171
.
20.
Chandra
,
R.
,
Giraud
,
V. H.
,
Alkhatib
,
M.
, and
Mezouar
,
Y.
,
2023
, “
Dual Quaternion Based Dynamic Movement Primitives to Learn Industrial Tasks Using Teleoperation
,”
2023 IEEE International Conference on Robotics and Automation (ICRA)
,
London, UK
,
May 29–June 2
, pp.
3757
3763
.
21.
Liendo
,
F.
,
Bozzi
,
A.
,
Hernández
,
C.
,
Galez
,
C.
,
Sacile
,
R.
, and
Jiménez
,
J.
,
2023
, “
An Improved Dual Quaternion-Based Dynamic Movement Primitives Formulation For Obstacle Avoidance Kinematics in Human-Robot Collaboration System of Systems
,”
2023 18th Annual System of Systems Engineering Conference (SoSe)
,
Lille, France
, June 14–16, pp.
1
5
.
22.
Hsu
,
D.
,
Latombe
,
J.-C.
, and
Motwani
,
R.
,
1999
, “
Path Planning in Expansive Configuration Spaces
,”
Int. J. Comput. Geometry Appl.
,
09
(
04n05
), pp.
495
512
.
23.
Ladd
,
A. M.
, and
Kavraki
,
L. E.
,
2005
, “
Motion Planning in the Presence of Drift, Underactuation and Discrete System Changes
,”
Proceedings of Robotics: Science and Systems
,
Cambridge, MA
.
24.
Karaman
,
S.
, and
Frazzoli
,
E.
,
2011
, “
Sampling-Based Algorithms for Optimal Motion Planning
,”
Int. J. Rob. Res.
,
30
(
7
), pp.
846
894
.
25.
Bohlin
,
R.
, and
Kavraki
,
L.
,
2000
, “
Path Planning Using Lazy PRM
,”
Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)
,
San Francisco, CA
, Apr. 24–28, Vol. 1, pp.
521
528
.
27.
Gašpar
,
T.
,
Nemec
,
B.
,
Morimoto
,
J.
, and
Ude
,
A.
,
2018
, “
Skill Learning and Action Recognition by Arc-Length Dynamic Movement Primitives
,”
Rob. Auton. Syst.
,
100
, pp.
225
235
.
You do not currently have access to this content.