Abstract

This article describes the design and modeling of an expandable and inflatable bending actuator with multiple pneumatic sources. The actuator includes independent pneumatic modules sewn onto a flexible, nonstretch fabric structure. The bladders of the actuator consist of the maintaining layer with constant pressure and the driving layer with adjustable pressure. The active state of the actuator can be altered by adjusting the pressure of the driving layer while varying the number of driving layers can lead to different operational modes. Compared to other soft actuators, the proposed pneumatic actuator can achieve a favorable balance between high unit mass output torque and better response performance. Based on the geometrical constraints, we propose a mathematical model for our design to forecast the output torque and confirm its validity through experimentation. Finally, we examine the impact of modifying the actuator air supply mode on both the functionality and operational state of the actuator and test its dynamic performance. Additionally, it should be mentioned that the output torque performance of the actuator remains stable, with no significant changes observed undergoing more than 500 inflation and deflation cycles.

References

1.
Coyle
,
S.
,
Majidi
,
C.
,
LeDuc
,
P.
, and
Hsia
,
K.
,
2018
, “
Bio-Inspired Soft Robotics: Material Selection, Actuation, and Design
,”
Extreme Mech. Lett.
,
22
, pp.
51
59
.
2.
Christianson
,
C.
,
Goldberg
,
N. N.
,
Deheyn
,
D. D.
,
Cai
,
S.
, and
Tolley
,
M. T.
,
2018
, “
Translucent Soft Robots Driven by Frameless Fluid Electrode Dielectric Elastomer Actuators
,”
Sci. Rob.
,
3
(
17
), p.
eaat1893
.
3.
Hines
,
L.
,
Petersen
,
K.
,
Lum
,
G. Z.
, and
Sitti
,
M.
,
2017
, “
Soft Actuators for Small-Scale Robotics
,”
Adv. Mater.
,
29
(
13
), p.
1603483
.
4.
Diller
,
E.
,
Giltinan
,
J.
,
Lum
,
G. Z.
,
Sitti
,
M.
, and
Ye
,
Z.
,
2016
, “
Six-Degree-of-Freedom Magnetic Actuation for Wireless Microrobotics
,”
Int. J. Rob. Res.
,
35
(
1–3
), pp.
114
128
.
5.
Gorissen
,
B.
,
Chishiro
,
T.
,
Shimomura
,
S.
,
Reynaerts
,
D.
,
De Volder
,
M.
, and
Konishi
,
S.
,
2014
, “
Flexible Pneumatic Twisting Actuators and Their Application to Tilting Micromirrors
,”
Sens. Actuators A: Phys.
,
216
, pp.
426
431
.
6.
Tawk
,
C.
, and
Alici
,
G.
,
2021
, “
A Review of 3D-Printable Soft Pneumatic Actuators and Sensors: Research Challenges and Opportunities
,”
Adv. Intell. Syst.
,
3
(
6
), p.
2000223
.
7.
El-Atab
,
N.
,
Mishra
,
R. B.
,
Al-Modaf
,
F.
,
Joharji
,
L.
,
Alsharif
,
A. A.
,
Alamoudi
,
H.
,
Diaz
,
M.
,
Qaiser
,
N.
, and
Hussain
,
M. M.
,
2020
, “
Soft Actuators for Soft Robotic Applications: A Review
,”
Adv. Intell. Syst.
,
2
(
10
), p.
2000128
.
8.
Felt
,
W.
,
2019
, “
Folded-Tube Soft Pneumatic Actuators for Bending
,”
Soft Rob.
,
6
(
2
), pp.
174
183
.
9.
Natividad
,
R. F.
,
Del Rosario
,
M. R.
,
Chen
,
P. C. Y.
, and
Yeow
,
C. H.
,
2017
, “
A Hybrid Plastic-Fabric Soft Bending Actuator With Reconfigurable Bending Profiles
,”
2017 IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
,
May 29–June 3
, IEEE, pp.
6700
6705
.
10.
Xavier
,
M. S.
,
Tawk
,
C. D.
,
Zolfagharian
,
A.
,
Pinskier
,
J.
,
Howard
,
D.
,
Young
,
T.
,
Lai
,
J.
, et al
,
2022
, “
Soft Pneumatic Actuators: A Review of Design, Fabrication, Modeling, Sensing, Control and Applications
,”
IEEE Access
,
10
, pp.
59442
59485
.
11.
Daerden
,
F.
, and
Lefeber
,
D.
,
2002
, “
Pneumatic Artificial Muscles: Actuators for Robotics and Automation
,”
Eur. J. Mech. Environ. Eng.
,
47
(
1
), pp.
11
21
.
12.
Zhang
,
C.
,
Zhu
,
P.
,
Lin
,
Y.
,
Tang
,
W.
,
Jiao
,
Z.
,
Yang
,
H.
, and
Zou
,
J.
,
2021
, “
Fluid Driven Artificial Muscles: Bio-Design, Manufacturing, Sensing, Control, and Applications
,”
Bio-Des. Manuf.
,
4
(
1
), p.
123145
. DOI:10.1007/s42242-020-00099-z
13.
De Pascali
,
C.
,
Naselli
,
G. A.
,
Palagi
,
S.
,
Scharff
,
R. B. N.
, and
Mazzolai
,
B.
,
2022
, “
3D-Printed Biomimetic Artificial Muscles Using Soft Actuators That Contract and Elongate
,”
Sci. Rob.
,
7
(
68
), p.
eabn4155
.
14.
Peele
,
B. N.
,
Wallin
,
T. J.
,
Zhao
,
H.
, and
Shepherd
,
R. F.
,
2015
, “
3D Printing Antagonistic Systems of Artificial Muscle Using Projection Stereolithography
,”
Bioinspir. Biomim.
,
10
(
5
), p.
055003
.
15.
Yap
,
H. K.
,
Ng
,
H. Y.
, and
Yeow
,
C. H.
,
2016
, “
High-Force Soft Printable Pneumatics for Soft Robotic Applications
,”
Soft Rob.
,
3
(
3
), pp.
144
158
.
16.
Nishioka
,
Y.
,
Uesu
,
M.
,
Tsuboi
,
H.
,
Kawamura
,
S.
,
Masuda
,
W.
,
Yasuda
,
T.
, and
Yamano
,
M.
,
2017
, “
Development of a Pneumatic Soft Actuator With Pleated Inflatable Structures
,”
Adv. Rob.
,
31
(
14
), pp.
753
762
.
17.
Zhang
,
X.
,
Liu
,
Z.
,
Liu
,
H.
,
Cao
,
L.
,
Chen
,
X.
, and
Huang
,
Y.
,
2019
, “Design and Experiment of a Foldable Pneumatic Soft Manipulator,”
Intelligent Robotics and Applications. ICIRA 2019. Lecture Notes in Computer Science
,
H.
Yu
,
J.
Liu
,
L.
Liu
,
Z.
Ju
,
Y.
Liu
, and
D.
Zhou
, eds.,
Springer
,
Cham
, pp.
183
192
.
18.
Xavier
,
M. S.
,
Fleming
,
A. J.
, and
Yong
,
Y. K.
,
2019
, “
Experimental Characterisation of Hydraulic Fiber-Reinforced Soft Actuators for Worm-Like Robots
,”
Proceedings of the 7th International Conference Control, Mechatronics and Automation (ICCMA)
,
Delft, Netherlands
,
Nov. 6–8
, p.
204209
.
19.
Wang
,
S.
,
Eugenio
,
F. M.
, and
Blumenschein
,
L. H.
,
2023
,
The Folded Pneumatic Artificial Muscle (foldPAM): Towards Programmability and Control Via End Geometry
,
Ithaca, NY
.
20.
Ang
,
B. W. K.
, and
Yeow
,
C.-H.
,
2020
, “
Design and Modeling of a High Force Soft Actuator for Assisted Elbow Flexion
,”
IEEE Rob. Autom. Lett.
,
5
(
2
), pp.
3731
3736
.
21.
Jin
,
T.
,
Li
,
L.
,
Wang
,
T.
,
Wang
,
G.
,
Cai
,
J.
,
Tian
,
Y.
, and
Zhang
,
Q.
,
2022
, “
Origami-Inspired Soft Actuators for Stimulus Perception and Crawling Robot Applications
,”
IEEE Trans. Rob.
,
38
(
2
), pp.
748
764
.
22.
Wallin
,
T. J.
,
Pikul
,
J.
, and
Shepherd
,
R. F.
,
2018
, “
3D Printing of Soft Robotic Systems
,”
Nat. Rev. Mater.
,
3
(
6
), p.
84100
.
23.
Zolfagharian
,
A.
,
Mahmud
,
M. A. P.
,
Gharaie
,
S.
,
Bodaghi
,
M.
,
Kouzani
,
A.
, and
Kaynak
,
A.
,
2020
, “
3D/4D-Printed Bending-Type Soft Pneumatic Actuators: Fabrication, Modelling, and Control
,”
Virtual Phys. Prototyp.
,
15
(
4
), p.
373402
. DOI:10.1080/17452759.2020.1795209
24.
Zou
,
X.
,
Liang
,
T.
,
Yang
,
M.
,
LoPresti
,
C.
,
Shukla
,
S.
,
Akin
,
M.
,
Weil
,
B. T.
,
Hoque
,
S.
,
Gruber
,
E.
, and
Mazzeo
,
A. D.
,
2022
, “
Paper-Based Robotics With Stackable Pneumatic Actuators
,”
Soft Rob.
,
9
(
3
), pp.
542
551
.
25.
Xavier
,
M. S.
,
Tawk
,
C. D.
,
Yong
,
Y. K.
, and
Fleming
,
A. J.
,
2021
, “
3D-Printed Omnidirectional Soft Pneumatic Actuators: Design, Modeling and Characterization
,”
Sens. Actuators A
,
332
(
Part 2
), p.
113199
.
26.
Zhang
,
Z.
,
Zhang
,
Q.
,
Dai
,
M.
,
Ding
,
X.
, and
Xia
,
Z.
,
2017
, “
Modeling of Multi-Cavity Composite Soft Pneumatic Actuators
,”
2017 24th International Conference on Mechatronics and Machine Vision in Practice (M2VIP)
,
Auckland, New Zealand
,
Nov. 21–23
, pp.
1
6
.
27.
Moon
,
D.-H.
,
Shin
,
S.-H.
,
Na
,
J.-B.
, and
Han
,
S.-Y.
,
2020
, “
Fluid–Structure Interaction Based on Meshless Local Petrov–Galerkin Method for Worm Soft Robot Analysis
,”
Int. J. Precis. Eng. Manuf. Green Technol.
,
7
(
3
), pp.
727
742
.
28.
Hu
,
Y.
,
Liu
,
J.
,
Spielberg
,
A.
,
Tenenbaum
,
J. B.
,
Freeman
,
W. T.
,
Wu
,
J.
,
Rus
,
D.
, and
Matusik
,
W.
,
2019
, “
ChainQueen: A Real-Time Differentiable Physical Simulator for Soft Robotics
,”
Proceedings of International Conference on Robotics and Automation (ICRA)
,
QC, Canada
,
May 20–24
, pp.
6265
6271
.
29.
Chen
,
F.
,
Xu
,
W.
,
Zhang
,
H.
,
Wang
,
Y.
,
Cao
,
J.
,
Wang
,
M. Y.
,
Ren
,
H.
,
Zhu
,
J.
, and
Zhang
,
Y. F.
,
2018
, “
Topology Optimized Design, Fabrication, and Characterization of a Soft Cable-Driven Gripper
,”
IEEE Rob. Autom. Lett.
,
3
(
3
), pp.
2463
2470
.
30.
Yi
,
J.
,
Chen
,
X.
,
Song
,
C.
, and
Wang
,
Z.
,
2018
, “
Fiber-Reinforced Origamic Robotic Actuator
,”
Soft Rob.
,
5
(
1
), pp.
81
92
.
31.
Thalman
,
C. M.
,
Lam
,
Q. P.
,
Nguyen
,
P. H.
,
Sridar
,
S.
, and
Polygerinos
,
P.
,
2018
, “
A Novel Soft Elbow Exosuit to Supplement Bicep Lifting Capacity
,”
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid
, pp.
6965
6971
.
32.
Kan
,
Z.
,
Pang
,
C.
,
Zhang
,
Y.
,
Yang
,
Y.
, and
Wang
,
M. Y.
,
2022
, “
Soft Actuator With Programmable Design: Modeling, Prototyping, and Applications
,”
Soft Rob.
,
9
(
5
), pp.
907
925
.
33.
Natividad
,
R.
,
Del Rosario
,
M.
,
Chen
,
P. C. Y.
, and
Yeow
,
C.-H.
,
2018
, “
A Reconfigurable Pneumatic Bending Actuator With Replaceable Inflation Modules
,”
Soft Rob.
,
5
(
3
), pp.
304
317
.
34.
Feng
,
M.
,
Yang
,
D.
,
Ren
,
L.
,
Wei
,
G.
, and
Gu
,
G.
,
2023
, “
X-Crossing Pneumatic Artificial Muscles
,”
Sci. Adv.
,
9
(
38
), p.
eadi7133
.
35.
Quevedo-Moreno
,
D.
, and
Roche
,
E. T.
,
2023
, “
Design and Modeling of Fabric-Shelled Pneumatic Bending Soft Actuators
,”
IEEE Rob. Autom. Lett.
,
8
(
6
), pp.
3110
3117
.
You do not currently have access to this content.