Abstract

Implementing back-drivable actuators with energy regeneration capabilities can improve the efficiency and extend the battery life of robotic exoskeletons, by converting a portion of dissipated energy during negative mechanical work into electrical energy. We present the first study of the regeneration capabilities of shoulder exoskeletons, which includes experimental motor parameter identification, the development of an electromechanical upper-limb human-exoskeleton model for energy regeneration, and task-based experiments assessing real-world energy generation despite inherent motor limitations. Initial steps involve motor parameter identification using a joint dynamometer system and modeling of the human-exoskeleton system with a specific emphasis on energy regeneration in the shoulder region. Task-based experiments were conducted to evaluate energy regeneration during daily exoskeleton usage. Our experimental identification reveals that the regenerated current follows a third-degree polynomial relationship with joint angular speed. Task-based simulations indicate that electrical energy recovery ranges from 30.4μJ during slow motions to 1.02 mJ during very fast movements. Efficiency analysis shows that performance peaks at approximately 60deg/s, where the trade-off between increased current generation and rising frictional losses is optimized. Despite challenges such as limited electricity generation due to motor characteristics, our findings demonstrate the feasibility of energy regeneration in shoulder exoskeletons, albeit with certain constraints.

References

1.
Molteni
,
F.
,
Gasperini
,
G.
,
Cannaviello
,
G.
, and
Guanziroli
,
E.
,
2018
, “
Exoskeleton and End-Effector Robots for Upper and Lower Limbs Rehabilitation: Narrative Review
,”
PM R
,
10
(
9
), pp.
S174
S188
.
2.
Wiggin
,
M. B.
,
Sawicki
,
G. S.
, and
Collins
,
S. H.
,
2011
, “
An Exoskeleton Using Controlled Energy Storage and Release to Aid Ankle Propulsion
,”
Proceedings of the IEEE International Conference on Rehabilitation Robotics
,
Zurich, Switzerland
,
July 1
.
3.
Young
,
A. J.
, and
Ferris
,
D. P.
,
2017
, “
State of the Art and Future Directions for Lower Limb Robotic Exoskeletons
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
25
(
2
), pp.
171
182
.
4.
Murugan
,
B.
, and
Balaji
,
M.
,
2021
, “
A Review on Exoskeleton for Military Purpose
,”
i-manager’s J. Mech. Eng.
,
11
(
2
), p.
36
. doi.org/10.26634/jme.11.2.17924
5.
Nasr
,
A.
,
Ferguson
,
S.
, and
McPhee
,
J.
,
2022
, “
Model-Based Design and Optimization of Passive Shoulder Exoskeletons
,”
ASME J. Comput. Nonlinear. Dyn.
,
17
(
5
), p.
051004
.
6.
Gopura
,
R.
,
Bandara
,
D. S. V.
,
Kiguchi
,
K.
, and
Mann
,
G. K. I.
,
2016
, “
Developments in Hardware Systems of Active Upper-Limb Exoskeleton Robots: A Review
,”
Rob. Auton. Syst.
,
75
, pp.
203
220
.
7.
Richter
,
H.
,
2015
, “
A Framework for Control of Robots With Energy Regeneration
,”
J. Dyn. Syst. Measur. Control Trans. ASME
,
137
(
9
), p.
091004
.
8.
Nasr
,
A.
,
Bell
,
S.
, and
McPhee
,
J.
,
2023
, “
Optimal Design of Active-Passive Shoulder Exoskeletons: A Computational Modeling of Human-Robot Interaction
,”
Multibody Syst. Dyn.
,
57
(
1
), pp.
73
106
.
9.
Xie
,
L.
,
Huang
,
G.
,
Huang
,
L.
,
Cai
,
S.
, and
Li
,
X.
,
2019
, “
An Unpowered Flexible Lower Limb Exoskeleton: Walking Assisting and Energy Harvesting
,”
IEEE/ASME Trans. Mechatron.
,
24
(
5
), pp.
2236
2247
.
10.
Feng
,
Y.
,
Mai
,
J.
,
Agrawal
,
S. K.
, and
Wang
,
Q.
,
2020
, “
Energy Regeneration From Electromagnetic Induction by Human Dynamics for Lower Extremity Robotic Prostheses
,”
IEEE Trans. Rob.
,
36
(
5
), pp.
1442
1451
.
11.
Laschowski
,
B. B.
,
McPhee
,
J.
, and
Andrysek
,
J.
,
2019
, “
Lower-Limb Prostheses and Exoskeletons With Energy Regeneration: Mechatronic Design and Optimization Review
,”
ASME J. Mech. Rob.
,
11
(
4
), p.
040801
.
12.
García
,
P. L.
,
Crispel
,
S.
,
Saerens
,
E.
,
Verstraten
,
T.
, and
Lefeber
,
D.
,
2020
, “
Compact Gearboxes for Modern Robotics: A Review
,”
Front. Rob. AI
,
7
, p.
103
. doi.org/10.3389/frobt.2020.00103
13.
Seok
,
S.
,
Wang
,
A.
,
Chuah
,
M. Y.
,
Hyun
,
D. J.
,
Lee
,
J.
,
Otten
,
D. M.
,
Lang
,
J. H.
, and
Kim
,
S.
,
2015
, “
Design Principles for Energy-Efficient Legged Locomotion and Implementation on the MIT Cheetah Robot
,”
IEEE/ASME Trans. Mechatron.
,
20
(
3
), pp.
1117
1129
.
14.
Liew
,
H. L.
, and
Mizuuchi
,
I.
,
2023
, “
Energy Regeneration System for Quasi-Direct Drive Actuated Knee Exoskeleton
,”
IEEE/SICE International Symposium on System Integration (SII)
,
Atlanta, GA
,
Jan. 20
.
15.
Hunter
,
I.
,
Ballantyne
,
J.
, and
Hollerbach
,
J. M.
,
1991
, “
A Comparative Analysis of Actuator Technologies for Robotics
,”
Rob. Rev.
,
2
, pp.
299
342
.
16.
Lv
,
G.
,
Zhu
,
H.
, and
Gregg
,
R. D.
,
2018
, “
On the Design and Control of Highly Backdrivable Lower-Limb Exoskeletons: A Discussion of Past and Ongoing Work
,”
IEEE Control Syst.
,
38
(
6
), pp.
88
113
.
17.
Zhu
,
H.
,
Nesler
,
C.
,
Divekar
,
N.
,
Peddinti
,
V.
, and
Gregg
,
R. D.
,
2021
, “
Design Principles for Compact, Backdrivable Actuation in Partial-Assist Powered Knee Orthoses
,”
IEEE/ASME Trans. Mechatron.
,
26
(
6
), pp.
3104
3115
.
18.
Nesler
,
C.
,
Thomas
,
G.
,
Divekar
,
N.
,
Rouse
,
E. J.
, and
Gregg
,
R. D.
,
2022
, “
Enhancing Voluntary Motion With Modular, Backdrivable, Powered Hip and Knee Orthoses
,”
IEEE Rob. Autom. Lett.
,
7
(
3
), pp.
6155
6162
.
19.
Laschowski
,
B.
,
Razavian
,
R. S.
, and
McPhee
,
J.
,
2021
, “
Simulation of Stand-to-Sit Biomechanics for Robotic Exoskeletons and Prostheses With Energy Regeneration
,”
IEEE Trans. Med. Rob. Bionics
,
3
(
2
), pp.
455
462
.
20.
Donelan
,
J. M.
,
Li
,
Q.
,
Naing
,
V.
,
Hoffer
,
J. A.
,
Weber
,
D. J.
, and
Kuo
,
A. D.
,
2008
, “
Biomechanical Energy Harvesting: Generating Electricity During Walking With Minimal User Effort
,”
Science
,
319
(
5864
), pp.
807
810
.
21.
Li
,
Q.
,
Naing
,
V.
, and
Donelan
,
J. M.
,
2009
, “
Development of a Biomechanical Energy Harvester
,”
J. NeuroEng. Rehabil.
,
6
(
1
), p.
0
.
22.
Wu
,
X.
,
Cao
,
W.
,
Yu
,
H.
,
Zhang
,
Z.
,
Leng
,
Y.
, and
Zhang
,
M.
,
2022
, “
Generating Electricity During Locomotion Modes Dominated by Negative Work Via a Knee Energy-Harvesting Exoskeleton
,”
IEEE/ASME Trans. Mechatron.
,
27
(
6
), pp.
4451
4461
.
23.
Chang
,
Y.
,
Wang
,
W.
, and
Fu
,
C.
,
2020
, “
A Lower Limb Exoskeleton Recycling Energy From Knee and Ankle Joints to Assist Push-Off
,”
ASME J. Mech. Rob.
,
12
(
5
), p.
051011
.
24.
Riemer
,
R.
,
Nuckols
,
R. W.
, and
Sawicki
,
G. S.
,
2021
, “
Extracting Electricity With Exosuit Braking
,”
Science
,
372
(
6545
), pp.
909
911
.
25.
Ren
,
L.
,
Cong
,
M.
,
Zhang
,
W.
, and
Tan
,
Y.
,
2021
, “
Harvesting the Negative Work of an Active Exoskeleton Robot to Extend Its Operating Duration
,”
Energy. Convers. Manage.
,
245
, p.
114640
.
26.
Li
,
J.
, and
Chen
,
C.
,
2023
, “
Machine Learning-Based Energy Harvesting for Wearable Exoskeleton Robots
,”
Sustainable Energy Technol. Assessments
,
57
, p.
103122
.
27.
Liu
,
F.
,
Zhang
,
L.
,
Mao
,
B.
,
Chen
,
Z.
,
Hu
,
B.
, and
Yu
,
H.
,
2023
, “
Design of Regeneration Energy Recovery Controller for Active Multi-Axis Lower Limb Exoskeleton
,”
Proceedings of the 2023 IEEE International Conference on Real-Time Computing and Robotics, RCAR 2023
,
Datong, China
,
July 20
, IEEE, pp.
527
531
.
28.
Chen
,
B.
,
Zheng
,
C.
,
Zi
,
B.
, and
Zhao
,
P.
,
2022
, “
Design and Implementation of Knee-Ankle Exoskeleton for Energy Harvesting and Walking Assistance
,”
Smart Mater. Struct.
,
31
(
12
), p.
125003
. doi.org/10.1088/1361-665X/ac9dd0
29.
Yoon
,
K. T.
, and
Choi
,
Y. M.
,
2023
, “
Biomechanical Regenerative Braking Energy Harvester: A Systematic Analysis
,”
Int. J. Precision Eng. Manuf. - Green Technol.
,
10
(
2
), pp.
437
456
.
30.
Orendurff
,
M. S.
,
Schoen
,
J. A.
,
Bernatz
,
G. C.
,
Segal
,
A. D.
, and
Klute
,
G. K.
,
2008
, “
How Humans Walk: Bout Duration, Steps per Bout, and Rest Duration
,”
J. Rehabil. Res. Dev.
,
45
(
7
), pp.
1077
1090
.
31.
Shi
,
Y.
,
Guo
,
M.
,
Zhong
,
H.
,
Ji
,
X.
,
Xia
,
D.
,
Luo
,
X.
, and
Yang
,
Y.
,
2022
, “
Kinetic Walking Energy Harvester Design for a Wearable Bowden Cable-Actuated Exoskeleton Robot
,”
Micromachines
,
13
(
4
), p.
571
.
32.
Riemer
,
R.
, and
Shapiro
,
A.
,
2011
, “
Biomechanical Energy Harvesting From Human Motion: Theory, State of the Art, Design Guidelines, and Future Directions
,”
J. NeuroEng. Rehabil.
,
8
(
1
), pp.
1
13
.
33.
Dickerson
,
C. R.
,
Chaffin
,
D. B.
, and
Hughes
,
R. E.
,
2007
, “
A Mathematical Musculoskeletal Shoulder Model for Proactive Ergonomic Analysis
,”
Comput. Methods Biomech. Biomed. Eng.
,
10
(
6
), pp.
389
400
.
34.
Nasr
,
A.
, and
McPhee
,
J.
,
2024
, “
Scalable Musculoskeletal Model for Dynamic Simulations of Lower Body Movement
,”
Comput. Methods Biomech. Biomed. Eng.
,
27
(
3
), pp.
1
27
.
35.
Nasr
,
A.
,
Hashemi
,
A.
, and
McPhee
,
J.
,
2023
, “
Scalable Musculoskeletal Model for Dynamic Simulations of Upper Body Movement
,”
Comput. Methods Biomech. Biomed. Eng.
,
27
(
3
), pp.
1
32
. doi.org/10.1080/10255842.2023.2184747
36.
Nasr
,
A.
,
Hunter
,
J.
,
Dickerson
,
C. R.
, and
McPhee
,
J.
,
2023
, “
Evaluation of a Machine Learning-Driven Active-Passive Upper Limb Exoskeleton Robot: Experimental Human-in-the-Loop Study
,”
Wearable Technol.
,
4
, p.
e13
.
37.
Nasr
,
A.
,
Bell
,
S.
,
Whittaker
,
R. L.
,
Dickerson
,
C. R.
, and
McPhee
,
J.
,
2023
, “
Robust Machine Learning Mapping of SEMG Signals to Future Actuator Commands in Biomechatronic Devices
,”
J. Bionic Eng.
,
21
(
1
), pp.
1
18
. doi.org/10.1007/s42235-023-00453-8
38.
Herzog
,
W.
,
1988
, “
The Relation Between the Resultant Moments at a Joint and the Moments Measured by an Isokinetic Dynamometer
,”
J. Biomech.
,
21
(
1
), pp.
5
12
.
39.
Roetenberg
,
D.
,
2006
, “
Inertial and Magnetic Sensing of Human Motion
,” Ph.D. thesis,
University of Twente
.
40.
Palanisamy
,
R.
,
Sahasrabuddhe
,
R.
,
Hiteshkumar
,
M. K.
, and
Puranik
,
J. A.
,
2021
, “
A New Energy Regeneration System for a BLDC Motor Driven Electric Vehicle
,”
Int. J. Electr. Comput. Eng.
,
11
(
4
), pp.
2986
2993
. doi.org/10.11591/ijece.v11i4.pp2986-2993
41.
Joseph Godfrey
,
A.
, and
Sankaranarayanan
,
V.
,
2018
, “
A New Electric Braking System With Energy Regeneration for a BLDC Motor Driven Electric Vehicle
,”
Eng. Sci. Technol., Int. J.
,
21
(
4
), pp.
704
713
.
42.
Heydari
,
S.
,
Fajri
,
P.
,
Rasheduzzaman
,
M.
, and
Sabzehgar
,
R.
,
2019
, “
Maximizing Regenerative Braking Energy Recovery of Electric Vehicles Through Dynamic Low-Speed Cutoff Point Detection
,”
IEEE Trans. Transp. Electrification
,
5
(
1
), pp.
262
270
.
43.
Proud
,
J. K.
,
Lai
,
D. T.
,
Mudie
,
K. L.
,
Carstairs
,
G. L.
,
Billing
,
D. C.
,
Garofolini
,
A.
, and
Begg
,
R. K.
,
2022
, “
Exoskeleton Application to Military Manual Handling Tasks
,”
Human Factors
,
64
(
3
), pp.
527
554
.
44.
Leova
,
L.
,
Cubanova
,
S.
,
Kutilek
,
P.
,
Volf
,
P.
,
Hejda
,
J.
,
Hybl
,
J.
,
Stastny
,
P.
,
Vagner
,
M.
, and
Krivanek
,
V.
,
2022
, “
Current State and Design Recommendations of Exoskeletons of Lower Limbs in Military Applications
,”
International Conference on Modelling and Simulation for Autonomous Systems
,
Online
,
Oct. 14
, Springer, pp.
452
463
.
45.
Poggensee
,
K. L.
, and
Collins
,
S. H.
,
2021
, “
How Adaptation, Training, and Customization Contribute to Benefits From Exoskeleton Assistance
,”
Sci. Rob.
,
6
(
58
), p.
eabf1078
.
46.
Nasr
,
A.
,
Hashemi
,
A.
, and
McPhee
,
J.
,
2022
, “
Model-based Mid-Level Regulation for Assist-as-Needed Hierarchical Control of Wearable Robots: A Computational Study of Human-Robot Adaptation
,”
Robotics
,
11
(
1
), p.
20
.
47.
Dos Santos
,
E. G.
, and
Richter
,
H.
,
2018
, “
Modeling and Control of a Novel Variable-Stiffness Regenerative Actuator
,”
Proceedings of the ASME Dynamic Systems and Control Conference
,
Atlanta, GA
,
Oct. 3
.
48.
Nasr
,
A.
,
Inkol
,
K.
, and
McPhee
,
J.
,
2024
, “
Safety in Wearable Robotic Exoskeletons: Design, Control, and Testing Guidelines
,”
ASME J. Mech. Rob.
,
17
(
5
), p.
050801
.
You do not currently have access to this content.