Abstract

This article presents a design methodology for exoskeleton-user connection attachments, i.e., braces that aim to reduce parasitic forces and potentially improve user comfort. The proposed brace structure incorporates additional passive joints, identified through a hyperstaticity analysis to minimize undesired tangential forces, e.g., rubbing against the user’s skin. To assess the proposed structure, we primarily conducted simulation experiments using a human-exoskeleton coupled model in an MSC ADAMS environment. Subsequently, a series of real-life experiments was conducted using a self-balancing bipedal exoskeleton with two distinct dummy manikins. The results demonstrated the feasibility of the proposed brace structure in reducing the parasitic forces and slippage compared to the conventional fixation approach.

References

1.
Zoss
,
A. B.
,
Kazerooni
,
H.
, and
Chu
,
A.
,
2006
, “
Biomechanical Design of the Berkeley Lower Extremity Exoskeleton (BLEEX)
,”
IEEE/ASME Trans. Mechatron.
,
11
(
2
), pp.
128
138
.
2.
Young
,
A. J.
, and
Ferris
,
D. P.
,
2017
, “
State of the Art and Future Directions for Lower Limb Robotic Exoskeletons
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
25
(
2
), pp.
171
182
.
3.
Zeilig
,
G.
,
Weingarden
,
H.
,
Zwecker
,
M.
,
Dudkiewicz
,
I.
,
Bloch
,
A.
, and
Esquenazi
,
A.
,
2012
, “
Safety and Tolerance of the ReWalk(TM) Exoskeleton Suit for Ambulation by People With Complete Spinal Cord Injury: A Pilot Study
,”
J. Spinal Cord Med.
,
35
(
2
), pp.
96
101
.
4.
Font-Llagunes
,
J. M.
,
Lugrís
,
U.
,
Clos
,
D.
,
Alonso
,
F. J.
, and
Cuadrado
,
J.
,
2020
, “
Design, Control, and Pilot Study of a Lightweight and Modular Robotic Exoskeleton for Walking Assistance After Spinal Cord Injury
,”
ASME J. Mech. Rob.
,
12
(
3
), p.
031008
.
5.
Lajeunesse
,
V.
,
Vincent
,
C.
,
Routhier
,
F.
,
Careau
,
E.
, and
Michaud
,
F.
,
2015
, “
Exoskeletons’ Design and Usefulness Evidence According to a Systematic Review of Lower Limb Exoskeletons Used for Functional Mobility by People With Spinal Cord Injury
,”
Disabil. Rehabil. Assist. Technol.
,
11
(
7
), pp.
535
547
.
6.
Baltrusch
,
S. J.
,
Houdijk
,
H.
,
van Dieën
,
J. H.
,
van Bennekom
,
C. A. M.
, and
de Kruif
,
A. J. T. C. M.
,
2020
, “
Perspectives of End Users on the Potential Use of Trunk Exoskeletons for People With Low-Back Pain: A Focus Group Study
,”
Hum. Factors
,
62
(
3
), pp.
365
376
.
7.
Cheng
,
C. Y. M.
,
Lee
,
C. C. Y.
,
Chen
,
C. K.
, and
Lou
,
V. W. Q.
,
2022
, “
Multidisciplinary Collaboration on Exoskeleton Development Adopting User-Centered Design: A Systematic Integrative Review
,”
Disabil. Rehabil. Assist. Technol.
,
19
(
3
), pp.
909
937
.
8.
Siviy
,
C.
,
Baker
,
L. M.
,
Quinlivan
,
B. T.
,
Porciuncula
,
F.
,
Swaminathan
,
K.
,
Awad
,
L. N.
, and
Walsh
,
C. J.
,
2022
, “
Opportunities and Challenges in the Development of Exoskeletons for Locomotor Assistance
,”
Nat. Biomed. Eng.
,
7
(
4
), pp.
456
472
.
9.
Babic
,
J.
,
Laffranchi
,
M.
,
Tessari
,
F.
,
Verstraten
,
T.
,
Novak
,
D.
,
Sarabon
,
N.
,
Ugurlu
,
B.
,
Peternel
,
L.
,
Torricelli
,
D.
, and
Veneman
,
J. F.
,
2021
, “
Challenges and Solutions for Application and Wider Adoption of Wearable Robots
,”
Wear. Technol.
,
2
(
November
), p.
e14
.
10.
Ergin
,
M. A.
, and
Patoglu
,
V.
,
2011
, “
A Self-adjusting Knee Exoskeleton for Robot-Assisted Treatment of Knee Injuries
,”
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Francisco, CA
,
Sept. 25–30
, pp.
4917
4922
.
11.
Zanotto
,
D.
,
Akiyama
,
Y.
,
Stegall
,
P.
, and
Agrawal
,
S. K.
,
2015
, “
Knee Joint Misalignment in Exoskeletons for the Lower Extremities: Effects on User’s Gait
,”
IEEE Trans. Robot.
,
31
(
4
), pp.
978
987
.
12.
Bartenbach
,
V.
,
2017
, “Constraints Caused by Lower Extremity Exoskeletons,” Ph.D. thesis, ETH Zurich, Zurich.
13.
Esquenazi
,
A.
,
Talaty
,
M.
,
Packel
,
A.
, and
Saulino
,
M.
,
2012
, “
The Rewalk Powered Exoskeleton to Restore Ambulatory Function to Individuals With Thoracic-Level Motor-Complete Spinal Cord Injury
,”
Am. J. Phys. Med. Rehabil.
,
91
(
11
), pp.
911
21
.
14.
Colombo
,
G.
,
Jörg
,
M.
,
Schreier
,
R.
, and
Dietz
,
V.
,
2000
, “
Treadmill Training of Paraplegic Patients Using a Robotic Orthosis
,”
J. Rehabil. Res. Dev.
,
37
(
6
), pp.
693
700
. https://babel.hathitrust.org/cgi/pt?id=rul
15.
Pablo
,
D.
,
Clarissa
,
R.
, and
Yimesker
,
Y.
,
2022
, “
Human-Exoskeleton Joint Coordination Assessment: A Case Study on the Shoulder and Elbow Joints
,”
J. Bionic Eng.
,
19
(
6
), pp.
1712
1721
.
16.
Shafiei
,
M.
, and
Behzadipour
,
S.
,
2019
, “
The Effects of the Connection Stiffness of Robotic Exoskeletons on the Gait Quality and Comfort
,”
ASME J. Mech. Rob.
,
12
(
1
), p.
011007
.
17.
Wang
,
J.
,
Li
,
X.
,
Huang
,
T.
,
Yu
,
S.
,
Li
,
Y.
,
Chen
,
T.
,
Carriero
,
A.
,
Oh-Park
,
M.
, and
Su
,
H.
,
2018
, “
Comfort-Centered Design of a Lightweight and Backdrivable Knee Exoskeleton
,”
IEEE Robot. Autom. Lett.
,
3
(
4
), pp.
4265
4272
.
18.
Beil
,
J.
,
Marquardt
,
C.
, and
Asfour
,
T.
,
2017
, “
Self-aligning Exoskeleton Hip Joint: Kinematic Design With Five Revolute, Three Prismatic and One Ball Joint
,”
2017 International Conference on Rehabilitation Robotics (ICORR)
,
London, UK
,
July 17–20
, pp.
1349
1355
.
19.
Junius
,
K.
,
Degelaen
,
M.
,
Lefeber
,
N.
,
Swinnen
,
E.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
,
2017
, “
Bilateral, Misalignment-Compensating, Full-DOF Hip Exoskeleton: Design and Kinematic Validation
,”
Appl. Bionics Biomech.
,
2017
(
July
), pp.
1
14
.
20.
Sarkisian
,
S.
,
Ishmael
,
M.
, and
Lenzi
,
T.
,
2021
, “
Self-aligning Mechanism Improves Comfort and Performance With a Powered Knee Exoskeleton
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
29
(
March
), pp.
629
640
.
21.
Zimmermann
,
Y.
,
Song
,
J.
,
Deguelle
,
C.
,
Laderach
,
J.
,
Zhou
,
L.
,
Hutter
,
M.
,
Riener
,
R.
, and
Wolf
,
P.
,
2023
, “
Human–Robot Attachment System for Exoskeletons: Design and Performance Analysis
,”
IEEE Trans. Robot.
,
39
(
4
), pp.
3087
3105
.
22.
Awad
,
M. I.
,
Hussain
,
I.
,
Ghosh
,
S.
,
Zweiri
,
Y.
, and
Gan
,
D.
,
2020
, “
A Double-Layered Elbow Exoskeleton Interface With 3-PRR Planar Parallel Mechanism for Axis Self-alignment
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
011016
.
23.
Stienen
,
A. H. A.
,
Hekman
,
E. E. G.
,
van der Helm
,
F. C. T.
, and
van der Kooij
,
H.
,
2009
, “
Self-aligning Exoskeleton Axes Through Decoupling of Joint Rotations and Translations
,”
IEEE Trans. Robot.
,
25
(
3
), pp.
628
633
.
24.
Lee
,
B.
,
Lee
,
S.
, and
Han
,
C.-S.
,
2020
, “
Design of Fixations for an Exoskeleton Device With Joint Axis Misalignments
,”
Int. J. Precis. Eng. Manuf.
,
21
(
2
), pp.
1291
1298
.
25.
Soliman
,
A. F.
,
Coruk
,
S.
,
Yildirim
,
M. C.
,
Ugur
,
D.
,
Cevik
,
S. C.
,
Ozkaynak
,
B.
,
Sendur
,
P.
, and
Ugurlu
,
B.
,
2025
, “
Design, Development, and Control for the Self-stabilizing Bipedal Exoskeleton Prototype Co-Ex
,”
IEEE/ASME Trans. Mechatron.
,
30
(
1
), pp.
458
468
.
26.
Lee
,
B.
,
Lee
,
S. C.
, and
Han
,
C.-S.
,
2020
, “
Design of Fixations for an Exoskeleton Device With Joint Axis Misalignments
,”
Int. J. Precis. Eng. Manuf.
,
21
(
7
), pp.
1291
1298
.
27.
Jarrasse
,
N.
, and
Morel
,
G.
,
2012
, “
Connecting a Human Limb to an Exoskeleton
,”
IEEE Trans. Robot.
,
28
(
3
), pp.
697
709
.
28.
Kerdraon
,
J.
,
Previnaire
,
J. G.
,
Tucker
,
M.
,
Coignard
,
P.
,
Allegre
,
W.
,
Knappen
,
E.
, and
Ames
,
A.
,
2021
, “
Evaluation of Safety and Performance of the Self Balancing Walking System Atalante in Patients With Complete Motor Spinal Cord Injury
,”
Spinal Cord Ser. Cases
,
7
(
1
), pp.
1
8
.
29.
Meijneke
,
C.
,
van Oort
,
G.
,
Sluiter
,
V.
,
van Asseldonk
,
E.
,
Tagliamonte
,
N. L.
,
Tamburella
,
F.
,
Pisotta
,
I.
, et al.,
2021
, “
Symbitron Exoskeleton: Design, Control, and Evaluation of a Modular Exoskeleton for Incomplete and Complete Spinal Cord Injured Individuals
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
29
, pp.
330
339
.
30.
Coruk
,
S.
,
2021
, “Development of a Torque-Controllable Upper Limb Exoskeleton for Industrial Applications,” Master’s thesis, Özyeğin University, Istanbul.
31.
Waldron
,
K.
,
1966
, “
The Constraint Analysis of Mechanisms
,”
J. Mech.
,
1
(
2
), pp.
101
114
.
32.
Crowell
,
P.
,
1995
, “Chuman Engineering Design Guidelines for a Powered, Full Body Exoskeleton,” Tech. Rep. ARL-TN-60, July, US Army Research Lab, Aberdeen Proving Ground, Aberdeen, MD.
33.
Levesque
,
L.
,
Pardoel
,
S.
,
Lovrenovic
,
Z.
, and
Doumit
,
M.
,
2017
, “
Experimental Comfort Assessment of an Active Exoskeleton Interface
,”
2017 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS)
,
Ottawa, ON, Canada
,
Oct. 5–7
, pp.
38
43
.
34.
Cevik
,
S. C.
,
Derman
,
M.
,
Unal
,
R.
,
Ugurlu
,
B.
, and
Bebek
,
O.
,
2021
, “
A Custom Brace Design to Connect a User Limb to an Exoskeleton Link With Minimal Discomfort
,”
2021 IEEE 19th International Conference on Industrial Informatics (INDIN)
,
Palma de Mallorca, Spain
,
July 21–23
, pp.
1
6
.
35.
Parmiggiani
,
A.
,
Prato
,
M.
, and
Pizzorni
,
M.
,
2021
, “
Effect of the Fiber Orientation on the Tensile and Flexural Behavior of Continuous Carbon Fiber Composites Made Via Fused Filament Fabrication
,”
Int. J. Adv. Manuf. Technol.
,
114
(
7–8
), pp.
2085
2101
.
36.
Li
,
J.
,
Jia
,
Y.
,
Li
,
T.
,
Zhu
,
Z.
,
Zhou
,
H.
,
Peng
,
X.
, and
Jiang
,
S.
,
2020
, “
Tensile Behavior of Acrylonitrile Butadiene Styrene at Different Temperatures
,”
Adv. Polym. Technol.
,
2020
(
1
), pp.
1
10
.
37.
Bobruk
,
E. V.
,
Dolzhenko
,
P. D.
,
Murashkin
,
M. Y.
,
Valiev
,
R. Z.
, and
Enikeev
,
N. A.
,
2022
, “
The Microstructure and Strength of UFG 6060 Alloy After Superplastic Deformation at a Lower Homologous Temperature
,”
Materials
,
15
(
19
), p.
6983
.
38.
Angel
,
L.
,
Pérez
,
M.
,
Díaz-Quintero
,
C.
, and
Mendoza
,
C.
,
2012
, “
ADAMS/MATLAB Co-simulation: Dynamic Systems Analysis and Control Tool
,”
Appl. Mech. Mater.
,
232
, pp.
527
531
.
39.
Derman
,
M.
,
Soliman
,
A. F.
,
Kuru
,
A.
,
Cevik
,
S. C.
,
Unal
,
R.
,
Bebek
,
O.
, and
Ugurlu
,
B.
,
2022
, “
Simulation-Based Design and Locomotion Control Implementation for a Lower Body Exoskeleton
,”
2022 IEEE 5th International Conference on Industrial Cyber-Physical Systems (ICPS)
,
Coventry, UK
,
May 24–26
, pp.
1
6
.
40.
Lebosse
,
C.
,
Renaud
,
P.
,
Bayle
,
B.
, and
de Mathelin
,
M.
,
2011
, “
Modeling and Evaluation of Low-Cost Force Sensors
,”
IEEE Trans. Robot.
,
27
(
4
), pp.
815
822
.
41.
McCann
,
C. M.
,
Hohimer
,
C. J.
,
O’Neill
,
C. T.
,
Young
,
H. T.
,
Bertoldi
,
K.
, and
Walsh
,
C. J.
,
2023
, “
In-Situ Measurement of Multi-axis Torques Applied by Wearable Soft Robots for Shoulder Assistance
,”
IEEE Trans. Med. Robot. Bionics
,
5
(
2
), pp.
363
374
.
42.
Clark
,
S.
, and
Riley
,
M. A.
,
2006
, “
Multisensory Information for Postural Control: Sway-Referencing Gain Shapes Center of Pressure Variability and Temporal Dynamics
,”
Exp. Brain Res.
,
176
(
2
), pp.
299
310
.
43.
Vigne
,
M.
,
Khoury
,
A. E.
,
Di Meglio
,
F.
, and
Petit
,
N.
,
2020
, “
Improving Low-Level Control of the Exoskeleton Atalante in Single Support by Compensating Joint Flexibility
,”
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Las Vegas, NV
,
Oct. 24, 2020–Jan. 24, 2021
, pp.
3437
3443
.
44.
Taveira
,
H. V.
,
de Lira
,
C. A. B.
,
Andrade
,
M. S.
,
Viana
,
R. B.
,
Tanaka
,
H.
,
Hill
,
L.
,
Nikolaidis
,
P. T.
,
Knechtle
,
B.
,
Rosemann
,
T.
, and
Vancini
,
R. L.
,
2021
, “
Isokinetic Muscle Strength and Postural Sway of Recreationally Active Older Adults Vs. Master Road Runners
,”
Front. Phys.
,
12
, p.
623150
.
45.
Zhou
,
L.
,
Chen
,
W.
,
Bai
,
S.
,
Wang
,
J.
,
Zhao
,
Z.
,
Zhao
,
X.
, and
Yu
,
X.
,
2022
, “
Lower Limb Exoskeleton Parasitic Force Modeling and Minimizing With an Adaptive Trajectory Controller
,”
Mech. Mach. Theory
,
170
, p.
104731
.
46.
Celebi
,
B.
,
Yalcin
,
M.
, and
Patoglu
,
V.
,
2013
, “
Assiston-Knee: A Self-aligning Knee Exoskeleton
,” 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.
996
1002
.
47.
Lee
,
Y.
,
Kim
,
Y.-J.
,
Lee
,
J.
,
Lee
,
M.
,
Choi
,
B.
,
Kim
,
J.
,
Park
,
Y. J.
, and
Choi
,
J.
,
2017
, “
Biomechanical Design of a Novel Flexible Exoskeleton for Lower Extremities
,”
IEEE/ASME Trans. Mechatron.
,
22
(
5
), pp.
2058
2069
.
You do not currently have access to this content.