Abstract

Cable-driven super-redundant robots (CDSSR) with slender and flexible bodies have wide application potential in narrow spaces. However, the control accuracy of the robot is affected by the instability of the operating stiffness during motion, which is related to the diversity of the cable tension distribution solutions. To solve this problem, an analytical stiffness model of the cable-driven super-redundant robot is first constructed based on the virtual work principle. Then, an optimal cable tension distribution model based on energy optimization and stiffness constraint is proposed. Third, a motion control framework of cable-driven super-redundant robot with stiffness constraints is proposed. Finally, constant stiffness control experiments and repeated positioning accuracy experiments of robot end under different end stiffness conditions are carried out on a 21-DOF cable-driven super-redundant robot. The results show that the proposed control strategy can achieve constant stiffness control. When the stiffness of the robot is adjusted from 200 N/m to 300 N/m, the repeated positioning accuracy in the X, Y, and Z directions is increased by 40.00%, 27.62%, and 53.09%, respectively. When the end stiffness is adjusted from 300 N/m to 400 N/m, the repeated positioning accuracy in the X, Y, and Z directions is increased by 40.81%, 58.08%, and 64.99%, respectively. The experimental results show that the proposed cable force distribution model and control strategy are effective.

References

1.
He
,
G.
,
Fan
,
Y.
,
Su
,
T.
,
Zhao
,
L.
, and
Zhao
,
Q.
,
2020
, “
Variable Impedance Control of Cable Actuated Continuum Manipulators
,”
Int. J. Control Autom. Syst.
,
18
(
7
), pp.
1839
1852
.
2.
Liu
,
T.
,
Xu
,
W.
,
Yang
,
T.
, and
Li
,
Y.
,
2020
, “
A Hybrid Active and Passive Cable-Driven Segmented Redundant Manipulator: Design, Kinematics, and Planning
,”
IEEE/ASME Trans. Mechatron.
,
26
(
2
), pp.
930
942
.
3.
Lin
,
B.
,
Xu
,
W.
,
Li
,
W.
,
Yuan
,
H.
, and
Liang
,
B.
,
2024
, “
Ex Situ Sensing Method for the End-Effector's Six-Dimensional Force and Link's Contact Force of Cable-Driven Redundant Manipulators
,”
IEEE Trans. Ind. Inf.
,
20
(
5
), pp.
7995
8006
.
4.
Qin
,
G.
,
Cheng
,
Y.
,
Ji
,
A.
,
Pan
,
H.
,
Yang
,
Y.
,
Yao
,
Z.
, and
Song
,
Y.
,
2024
, “
Research on the Cable-Driven Endoscopic Manipulator for Fusion Reactors
,”
Nucl. Eng. Technol.
,
56
(
2
), pp.
498
505
.
5.
Buckingham
,
R. O.
, and
Graham
,
A. C.
,
2010
, “
Dexterous Manipulators for Nuclear Inspection and Maintenance—Case Study
,”
2010 First International Conference on Applied Robotics for the Power Industry(CARPI)
,
Montreal, PQ
,
Oct.
,
IEEE
, pp.
1
6
.
6.
Hong
,
W.
,
Xie
,
L.
,
Liu
,
J.
,
Sun
,
Y.
,
Li
,
K.
, and
Wang
,
H.
,
2018
, “
Development of a Novel Continuum Robotic System for Maxillary Sinus Surgery
,”
IEEE/ASME Trans. Mechatron.
,
23
(
3
), pp.
1226
1237
.
7.
Alatorre
,
D.
,
Nasser
,
B.
,
Rabani
,
A.
,
Nagy-Sochacki
,
A.
,
Dong
,
X.
,
Axinte
,
D.
, and
Kell
,
J.
,
2018
, “
Teleoperated, In Situ Repair of an Aeroengine: Overcoming the Internet Latency Hurdle
,”
IEEE Robot. Autom. Mag.
,
26
(
1
), pp.
10
20
.
8.
Guochen
,
N.
, and
Kailu
,
X.
,
2018
, “
Path Planning Based on Q-Learning and Three-Segment Method for Aircraft Fuel Tank Inspection Robot
,”
Filomat
,
32
(
5
), pp.
1797
1807
.
9.
Wang
,
M.
,
Dong
,
X.
,
Ba
,
W.
,
Mohammad
,
A.
,
Axinte
,
D.
, and
Norton
,
A.
,
2021
, “
Design, Modelling and Validation of a Novel Extra Slender Continuum Robot for In-Situ Inspection and Repair in Aeroengine
,”
Rob. Comput. Integr. Manuf.
,
67
, pp.
102054
.
10.
Li
,
W.
,
Huang
,
X.
,
Yan
,
L.
,
Cheng
,
H.
,
Liang
,
B.
, and
Xu
,
W.
,
2023
, “
Force Sensing and Compliance Control for a Cable-Driven Redundant Manipulator
,”
IEEE/ASME Trans. Mechatron.
,
29
(
1
), pp.
777
788
.
11.
Jones
,
B. A.
, and
Walker
,
I. D.
,
2006
, “
Practical Kinematics for Real-Time Implementation of Continuum Robots
,”
IEEE Trans. Rob.
,
22
(
6
), pp.
1087
1099
.
12.
Lafmejani
,
A. S.
,
Doroudchi
,
A.
,
Farivarnejad
,
H.
,
He
,
X.
,
Aukes
,
D.
,
Peet
,
M. M.
,
Marvi
,
H.
,
Fisher
,
R. E.
, and
Berman
,
S.
,
2020
, “
Kinematic Modeling and Trajectory Tracking Control of an Octopus-Inspired Hyper-Redundant Robot
,”
IEEE Rob. Autom. Lett.
,
5
(
2
), pp.
3460
3467
.
13.
Tang
,
J.
,
Zhang
,
Y.
,
Huang
,
F.
,
Li
,
J.
,
Chen
,
Z.
,
Song
,
W.
,
Zhu
,
S.
, and
Gu
,
J.
,
2019
, “
Design and Kinematic Control of the Cable-Driven Hyper-Redundant Manipulator for Potential Underwater Applications
,”
Appl. Sci.
,
9
(
6
), pp.
1142
.
14.
Goldman
,
R. E.
,
Bajo
,
A.
, and
Simaan
,
N.
,
2011
, “
Compliant Motion Control for Continuum Robots With Intrinsic Actuation Sensing
,”
2011 IEEE International Conference on Robotics and Automation (ICRA)
,
Shanghai, China
,
May
,
IEEE
, pp.
1126
1132
.
15.
Bajo
,
A.
, and
Simaan
,
N.
,
2016
, “
Hybrid Motion/Force Control of Multi-Backbone Continuum Robots
,”
Int. J. Rob. Res.
,
35
(
4
), pp.
422
434
.
16.
Gravagne
,
I. A.
, and
Walker
,
I. D.
,
2002
, “
Uniform Regulation of a Multi-Section Continuum Manipulator
,”
2002 IEEE International Conference on Robotics and Automation (ICRA)
,
Washington DC
,
May
,
IEEE
, pp.
1519
1524
.
17.
Xu
,
W.
,
Liu
,
T.
, and
Li
,
Y.
,
2018
, “
Kinematics, Dynamics, and Control of a Cable-Driven Hyper-Redundant Manipulator
,”
IEEE/ASME Trans. Mechatron.
,
23
(
4
), pp.
1693
1704
.
18.
Gu
,
H.
,
Wei
,
C.
,
Zhang
,
Z.
, and
Zhao
,
Y.
,
2021
, “
Theoretical and Experimental Study on Active Stiffness Control of a Two-Degrees-of-Freedom Rope-Driven Parallel Mechanism
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
011018
.
19.
Melingui
,
A.
,
Lakhal
,
O.
,
Daachi
,
B.
,
Mbede
,
J. B.
, and
Merzouki
,
R.
,
2015
, “
Adaptive Neural Network Control of a Compact Bionic Handling Arm
,”
IEEE/ASME Trans. Mechatron.
,
20
(
6
), pp.
2862
2875
.
20.
Ansari
,
Y.
,
Manti
,
M.
,
Falotico
,
E.
,
Cianchetti
,
M.
, and
Laschi
,
C.
,
2017
, “
Multi-Objective Optimization for Stiffness and Position Control in a Soft Robot Arm Module
,”
IEEE Robot. Autom. Lett.
,
3
(
1
), pp.
108
115
.
21.
Yip
,
M. C.
, and
Camarillo
,
D. B.
,
2014
, “
Model-Less Feedback Control of Continuum Manipulators in Constrained Environments
,”
IEEE Trans. Rob.
,
30
(
4
), pp.
880
889
.
22.
Yang
,
K.
,
Yang
,
G.
,
Chen
,
S. L.
,
Wang
,
Y.
,
Zhang
,
C.
,
Fang
,
Z.
,
Zheng
,
T.
, and
Wang
,
C.
,
2019
, “
Study on Stiffness-Oriented Cable Tension Distribution for a Symmetrical Cable-Driven Mechanism
,”
Symmetry
,
11
(
9
), pp.
1158
.
23.
Yang
,
K.
,
Yang
,
G.
,
Zhang
,
C.
,
Chen
,
C.
,
Zheng
,
T.
,
Cui
,
Y.
, and
Chen
,
T.
,
2020
, “
Cable Tension Analysis Oriented the Enhanced Stiffness of a 3-DOF Joint Module of a Modular Cable-Driven Human-Like Robotic Arm
,”
Appl. Sci.
,
10
(
24
), pp.
8871
.
24.
Cui
,
Z.
,
Tang
,
X.
,
Hou
,
S.
, and
Sun
,
H.
,
2018
, “
Research on Controllable Stiffness of Redundant Cable-Driven Parallel Robots
,”
IEEE/ASME Trans. Mechatron.
,
23
(
5
), pp.
2390
2401
.
25.
Boehler
,
Q.
,
Abdelaziz
,
S.
,
Vedrines
,
M.
,
Poignet
,
P.
, and
Renaud
,
P.
,
2017
, “
From Modeling to Control of a Variable Stiffness Device Based on a Cable-Driven Tensegrity Mechanism
,”
Mech. Mach. Theory
,
107
, pp.
1
12
.
26.
Kobayashi
,
H.
,
Hyodo
,
K.
, and
Ogane
,
D.
,
1998
, “
On Tendon-Driven Robotic Mechanisms With Redundant Tendons
,”
Int. J. Rob. Res.
,
17
(
5
), pp.
561
571
.
27.
Muralidharan
,
V.
,
Testard
,
N.
,
Chevallereau
,
C.
,
Abourachid
,
A.
, and
Wenger
,
P.
,
2023
, “
Variable Stiffness and Antagonist Actuation for Cable-Driven Manipulators Inspired by the Bird Neck,”
ASME J. Mech. Rob.
,
15
(
3
), p.
035002
.
You do not currently have access to this content.