Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Cable-driven robots are characterized by a large workspace, high speed, and load-to-weight ratio, providing a new technology approach for large-scale autonomous 3D construction of lunar surface shelters. A novel deployable cable-driven construction 3D printer (CDCP) is developed in this study. Guiding pulleys are considered and modeled to improve the accuracy of the system. A fuzzy adaptive differential evolution PID (FDEPID) control is proposed to reduce end-effector motion errors in Cartesian space and thus improve printing quality and stability. Concentric and zigzag infill strategies are compared to optimize printing efficiency and infill effectiveness in path planning. The simulations focus on evaluating the effects of pulley kinematics on trajectory tracking, evaluating system dynamics under low-gravity conditions, and examining the effectiveness of motion control and path planning methods. Finally, experiments are carried out to validate the proposed FDEPID control and path planning strategies which demonstrate the great potential of the developed cable-driven printer in the construction of lunar architecture.

References

1.
Clinton
,
R.
,
Edmunson
,
J.
,
Effinger
,
M.
,
Fiske
,
M.
,
Ballard
,
J.
,
Jensen
,
E.
,
Yashar
,
M.
,
Ciardullo
,
C.
,
Morris
,
M.
, and
Pailes-Friedman
,
R.
,
2021
, “
Overview of NASA’s Moon to Mars Planetary Autonomous Construction Technology (MMPACT)
,”
73rd International Astronautical Congress
,
Paris, France
,
Sept. 18–22
.
2.
Campbell
,
A.
,
Carson
,
H.
,
Soto
,
M.
,
English
,
K.
,
Fiske
,
M.
,
Martin
,
L.
, and
Murai
,
V.
,
2021
, “
Lunar PAD—On the Development of a Unique ISRU-Based Planetary Landing Pad for Cratering and Dust Mitigation
,”
AIAA Scitech 2021 Forum
,
Virtual Event
,
Jan. 11–15 & 19–21
, p.
0356
.
3.
Khoshnevis
,
B.
,
2004
, “
Automated Construction by Contour Crafting-Related Robotics and Information Technologies
,”
Autom. Constr.
,
13
(
1
), pp.
5
19
.
4.
Bosscher
,
P.
,
Williams
,
R. L.
,
Bryson
,
L. S.
, and
Castro-Lacouture
,
D.
,
2007
, “
Cable-Suspended Robotic Contour Crafting System
,”
Autom. Constr.
,
17
(
1
), pp.
45
55
.
5.
Zhou
,
C.
,
Tang
,
B.
,
Ding
,
L.
,
Sekula
,
P.
,
Zhou
,
Y.
, and
Zhang
,
Z.
,
2020
, “
Design and Automated Assembly of Planetary LEGO Brick for Lunar In-Situ Construction
,”
Autom. Constr.
,
118
, p.
103282
.
6.
Zhou
,
C.
,
Chen
,
R.
,
Xu
,
J.
,
Ding
,
L.
,
Luo
,
H.
,
Fan
,
J.
,
Chen
,
E. J.
,
Cai
,
L.
, and
Tang
,
B.
,
2019
, “
In-Situ Construction Method for Lunar Habitation: Chinese Super Mason
,”
Autom. Constr.
,
104
, pp.
66
79
.
7.
Ngo
,
T. D.
,
Kashani
,
A.
,
Imbalzano
,
G.
,
Nguyen
,
K. T. Q.
, and
Hui
,
D.
,
2018
, “
Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges
,”
Composites Part B
,
143
, pp.
172
196
.
8.
Cesaretti
,
G.
,
Dini
,
E.
,
De Kestelier
,
X.
,
Colla
,
V.
, and
Pambaguian
,
L.
,
2014
, “
Building Components for an Outpost on the Lunar Soil by Means of a Novel 3D Printing Technology
,”
Acta Astronaut.
,
93
, pp.
430
450
.
9.
Toklu
,
Y. C.
, and
Akpinar
,
P.
,
2022
, “
Lunar Soils, Simulants and Lunar Construction Materials: An Overview
,”
Adv. Space Res.
,
70
(
3
), pp.
762
779
.
10.
Bao
,
C.
,
Zhang
,
D.
,
Wang
,
Q.
,
Cui
,
Y.
, and
Feng
,
P.
,
2024
, “
Lunar In Situ Large-Scale Construction: Quantitative Evaluation of Regolith Solidification Techniques
,”
Engineering
,
39
, pp.
204
221
.
11.
Liu
,
M.
,
Tang
,
W.
,
Duan
,
W.
,
Li
,
S.
,
Dou
,
R.
,
Wang
,
G.
,
Liu
,
B.
, and
Wang
,
L.
,
2019
, “
Digital Light Processing of Lunar Regolith Structures With High Mechanical Properties
,”
Ceram. Int.
,
45
(
5
), pp.
5829
5836
.
12.
Zhang
,
X.
,
Li
,
M.
,
Lim
,
J. H.
,
Weng
,
Y.
,
Tay
,
Y. W. D.
,
Pham
,
H.
, and
Pham
,
Q.-C.
,
2018
, “
Large-Scale 3D Printing by a Team of Mobile Robots
,”
Autom. Constr.
,
95
, pp.
98
106
.
13.
Puzatova
,
A.
,
Shakor
,
P.
,
Laghi
,
V.
, and
Dmitrieva
,
M.
,
2022
, “
Large-Scale 3D Printing for Construction Application by Means of Robotic Arm and Gantry 3D Printer: A Review
,”
Buildings
,
12
(
11
), p.
2023
.
14.
Barnett
,
E.
, and
Gosselin
,
C.
,
2015
, “
Large-Scale 3D Printing With a Cable-Suspended Robot
,”
Addit. Manuf.
,
7
, pp.
27
44
.
15.
Izard
,
J.-B.
,
Dubor
,
A.
,
Hervé
,
P.-E.
,
Cabay
,
E.
,
Culla
,
D.
,
Rodriguez
,
M.
, and
Barrado
,
M.
,
2017
, “
Large-Scale 3D Printing With Cable-Driven Parallel Robots
,”
Constr. Rob.
,
1
(
1–4
), pp.
69
76
.
16.
Zhang
,
D.
,
Zhou
,
D.
,
Zhang
,
G.
,
Shao
,
G.
, and
Li
,
L.
,
2021
, “
3D Printing Lunar Architecture With a Novel Cable-Driven Printer
,”
Acta Astronaut.
,
189
, pp.
671
678
.
17.
Gouttefarde
,
M.
,
Nguyen
,
D. Q.
, and
Baradat
,
C.
,
2014
, “Kinetostatic Analysis of Cable-Driven Parallel Robots With Consideration of Sagging and Pulleys,”
Advances in Robot Kinematics
,
J.
Lenarčič
and
O.
Khatib
, eds.,
Springer International Publishing
,
Cham
, pp.
213
221
.
18.
Nguyen
,
D. Q.
,
Gouttefarde
,
M.
,
Company
,
O.
, and
Pierrot
,
F.
,
2013
, “
On the Simplifications of Cable Model in Static Analysis of Large-Dimension Cable-Driven Parallel Robots
,”
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Tokyo, Japan
,
Nov. 3–7
, IEEE, pp.
928
934
.
19.
Qian
,
S.
,
Jiang
,
X.
,
Liu
,
Y.
,
Wang
,
S.
,
Sun
,
X.
, and
Sun
,
H.
,
2023
, “
Design and Error Compensation of a 3-Degrees-of-Freedom Cable-Driven Hybrid 3D-Printing Mechanism
,”
Mech. Sci.
,
14
(
2
), pp.
371
386
.
20.
Qian
,
S.
,
Zhao
,
Z.
,
Qian
,
P.
,
Wang
,
Z.
, and
Zi
,
B.
,
2024
, “
Research on Workspace Visual-Based Continuous Switching Sliding Mode Control for Cable-Driven Parallel Robots
,”
Robotica
,
42
(
1
), pp.
1
20
.
21.
Zhou
,
B.
,
Wang
,
Y.
,
Zi
,
B.
, and
Zhu
,
W.
,
2023
, “
Fuzzy Adaptive Whale Optimization Control Algorithm for Trajectory Tracking of a Cable-Driven Parallel Robot
,”
IEEE Trans. Autom. Sci. Eng.
,
21
, pp.
5149
5160
.
22.
Vu
,
D.-S.
,
Barnett
,
E.
, and
Gosselin
,
C.
,
2019
, “
Experimental Validation of a Three-Degree-of-Freedom Cable-Suspended Parallel Robot for Spatial Translation With Constant Orientation
,”
ASME J. Mech. Rob.
,
11
(
2
), p.
024502
.
23.
Wu
,
G.
,
Shen
,
X.
,
Li
,
H.
,
Chen
,
H.
,
Lin
,
A.
, and
Suganthan
,
P.
,
2018
, “
Ensemble of Differential Evolution Variants
,”
Inf. Sci.
,
423
, pp.
172
186
.
24.
Slowik
,
A.
, and
Kwasnicka
,
H.
,
2020
, “
Evolutionary Algorithms and Their Applications to Engineering Problems
,”
Neural Comput. Appl.
,
32
(
16
), pp.
12363
12379
.
25.
Xiang
,
S.
,
Gao
,
H.
,
Liu
,
Z.
, and
Gosselin
,
C.
,
2020
, “
Dynamic Point-to-Point Trajectory Planning for Three Degrees-of-Freedom Cable-Suspended Parallel Robots Using Rapidly Exploring Random Tree Search
,”
ASME J. Mech. Rob.
,
12
(
4
), p.
041007
.
26.
Lim
,
S.
,
Buswell
,
R. A.
,
Le
,
T. T.
,
Austin
,
S. A.
,
Gibb
,
A. G. F.
, and
Thorpe
,
T.
,
2012
, “
Developments in Construction-Scale Additive Manufacturing Processes
,”
Autom. Constr.
,
21
, pp.
262
268
.
27.
Zhang
,
J.
, and
Khoshnevis
,
B.
,
2013
, “
Optimal Machine Operation Planning for Construction by Contour Crafting
,”
Autom. Constr.
,
29
, pp.
50
67
.
28.
Camposeco-Negrete
,
C.
,
2020
, “
Optimization of Printing Parameters in Fused Deposition Modeling for Improving Part Quality and Process Sustainability
,”
Int. J. Adv. Manuf. Technol.
,
108
(
7
), pp.
2131
2147
.
29.
Gordeev
,
E. G.
,
Galushko
,
A. S.
, and
Ananikov
,
V. P.
,
2018
, “
Improvement of Quality of 3D Printed Objects by Elimination of Microscopic Structural Defects in Fused Deposition Modeling
,”
PLoS One
,
13
(
6
), p.
e0198370
.
You do not currently have access to this content.