Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This paper presents a topology optimization method of compliant grippers considering stress constraints. The proportional topology optimization (PTO) algorithm is applied to the design of compliant grippers, and it is improved by introducing weight factors into the objective function and adding stress conditions on the basis of constraints. In the current gradient modeling of topology optimization, the global maximum stress is measured by P-norm function, and its sensitivity analysis of stress constraints is derived by adjoint equations. It is worth noting that more rigorous gradient calculations are employed in stress problems and their computation brings an additional computational burden. By contrast, the non-gradient method using PTO algorithm allocates design variables to the element proportionally according to the values of stress. It can eliminate difficulties in the analytical derivation and calculation of gradient, and improve the calculation efficiency. Subsequently, performances of compliant grippers generated by these two methods are compared through finite element analysis. Finally, the optimized compliant gripper prototype is manufactured by three-dimensional (3D) printing using flexible thermoplastic urethane. Experimental results indicate that the non-gradient method is effective, and the optimized compliant gripper has excellent characteristics of low stress and high output performance.

References

1.
Wang
,
Z.
,
Torigoe
,
Y.
, and
Hirai
,
S.
,
2017
, “
A Prestressed Soft Gripper: Design, Modeling, Fabrication, and Tests for Food Handling
,”
IEEE Robot. Autom. Lett.
,
2
(
4
), pp.
1909
1916
.
2.
Wang
,
Z.
,
Or
,
K.
, and
Hirai
,
S.
,
2020
, “
A Dual-Mode Soft Gripper for Food Packaging
,”
Rob. Auton. Syst.
,
125
(
3
), p.
103427
.
3.
Zhang
,
B.
,
Xie
,
Y.
,
Zhou
,
J.
,
Wang
,
K.
, and
Zhang
,
Z.
,
2020
, “
State-of-the-Art Robotic Grippers, Grasping and Control Strategies, as Well as Their Applications in Agricultural Robots: A Review
,”
Comput. Electron. Agric.
,
177
(
10
), p.
105694
.
4.
Tian
,
G.
,
Zhou
,
J.
, and
Gu
,
B.
,
2018
, “
Slipping Detection and Control in Gripping Fruits and Vegetables for Agricultural Robot
,”
Int. J. Agric. Biol. Eng.
,
11
(
4
), pp.
29
34
.
5.
Galloway
,
K. C.
,
Becker
,
K. P.
,
Phillips
,
B.
,
Kirby
,
J.
,
Licht
,
S.
,
Tchernov
,
D.
,
Wood
,
R. J.
, and
Gruber
,
D. F.
,
2016
, “
Soft Robotic Grippers for Biological Sampling on Deep Reefs
,”
Soft Rob.
,
3
(
1
), pp.
23
33
.
6.
Mura
,
D.
,
Barbarossa
,
M.
,
Dinuzzi
,
G.
,
Grioli
,
G.
,
Caiti
,
A.
, and
Catalano
,
M. G.
,
2018
, “
A Soft Modular End Effector for Underwater Manipulation: A Gentle, Adaptable Grasp for the Ocean Depths
,”
IEEE Rob. Autom. Mag.
,
25
(
4
), pp.
45
56
.
7.
Shintake
,
J.
,
Cacucciolo
,
V.
,
Floreano
,
D.
, and
Shea
,
H.
,
2018
, “
Soft Robotic Grippers
,”
Adv. Mater.
,
30
(
29
), p.
1707035
.
8.
Chen
,
R.
,
Song
,
R.
,
Zhang
,
Z.
,
Bai
,
L.
,
Liu
,
F.
,
Jiang
,
P.
,
Sindersberger
,
D.
,
Monkman
,
G. J.
, and
Guo
,
J.
,
2019
, “
Bio-Inspired Shape-Adaptive Soft Robotic Grippers Augmented With Electroadhesion Functionality
,”
Soft Rob.
,
6
(
6
), pp.
701
712
.
9.
Hussain
,
I.
,
Renda
,
F.
,
Iqbal
,
Z.
,
Malvezzi
,
M.
,
Salvietti
,
G.
,
Seneviratne
,
L.
,
Gan
,
D.
, and
Prattichizzo
,
D.
,
2018
, “
Modeling and Prototyping of an Underactuated Gripper Exploiting Joint Compliance and Modularity
,”
IEEE Robot. Autom. Lett.
,
3
(
4
), pp.
2854
2861
.
10.
Kaur
,
M.
, and
Kim
,
W. S.
,
2019
, “
Toward a Smart Compliant Robotic Gripper Equipped With 3D-Designed Cellular Fingers
,”
Adv. Intell. Syst.
,
1
(
3
), p.
1900019
.
11.
Janbaz
,
S.
,
Bobbert
,
F. S. L.
,
Mirzaali
,
M. J.
, and
Zadpoor
,
A. A.
,
2019
, “
Ultra-Programmable Buckling-Driven Soft Cellular Mechanisms
,”
Mater. Horiz.
,
6
(
6
), pp.
1138
1147
.
12.
Jin
,
M.
, and
Zhang
,
X.
,
2016
, “
A New Topology Optimization Method for Planar Compliant Parallel Mechanisms
,”
Mech. Mach. Theory
,
95
(
1
), pp.
42
58
.
13.
Zhu
,
B.
,
Wang
,
R.
,
Wang
,
N.
,
Li
,
H.
,
Zhang
,
X.
, and
Nishiwaki
,
S.
,
2021
, “
Explicit Structural Topology Optimization Using Moving Wide Bezier Components With Constrained Ends
,”
Struct. Multidiscipl. Optim.
,
64
(
1
), pp.
53
70
.
14.
Liu
,
C.-H.
,
Chiu
,
C.-H.
,
Chen
,
T.-L.
,
Pai
,
T.-Y.
,
Hsu
,
M.-C.
, and
Chen
,
Y.
,
2018
, “
Topology Optimization and Prototype of a Three-Dimensional Printed Compliant Finger for Grasping Vulnerable Objects with Size and Shape Variations
,”
ASME J. Mech. Rob.
,
10
(
4
), p.
044502
.
15.
Liu
,
C.-H.
,
Chen
,
T.-L.
,
Chiu
,
C.-H.
,
Hsu
,
M.-C.
,
Chen
,
Y.
,
Pai
,
T.-Y.
,
Peng
,
W.-G.
, and
Chiang
,
Y.-P.
,
2018
, “
Optimal Design of a Soft Robotic Gripper for Grasping Unknown Objects
,”
Soft Rob.
,
5
(
4
), pp.
452
465
.
16.
Liu
,
C.-H.
,
Chung
,
F.-M.
, and
Ho
,
Y.-P.
,
2021
, “
Topology Optimization for Design of a 3D-Printed Constant-Force Compliant Finger
,”
IEEE/ASME Trans. Mechatron.
,
26
(
4
), pp.
1828
1836
.
17.
Sun
,
Y.
,
Liu
,
Y.
,
Pancheri
,
F.
, and
Lueth
,
T. C.
,
2022
, “
LARG: A Lightweight Robotic Gripper with 3-D Topology Optimized Adaptive Fingers
,”
IEEE/ASME Trans. Mechatron.
,
27
(
4
), pp.
2026
2034
.
18.
Huang
,
J.
,
Wei
,
Z.
,
Cui
,
Y.
, and
Liu
,
J.
,
2023
, “
Clamping Force Manipulation in 2D Compliant Gripper Topology Optimization Under Frictionless Contact
,”
Struct. Multidiscipl. Optim.
,
66
(
7
), pp.
1
20
.
19.
Deng
,
H.
,
Vulimiri
,
P. S.
, and
To
,
A. C.
,
2021
, “
An Efficient 146-Line 3D Sensitivity Analysis Code of Stress-Based Topology Optimization Written in MATLAB
,”
Optim. Eng.
,
8
(
3
), pp.
1733
1757
.
20.
Biyikli
,
E.
, and
To
,
A. C.
,
2015
, “
Proportional Topology Optimization: A New Non-Sensitivity Method for Solving Stress Constrained and Minimum Compliance Problems and Its Implementation in MATLAB
,”
PLoS One
,
10
(
12
), p.
e0145041
.
21.
Zhu
,
B.
, and
Zhang
,
X.
,
2012
, “
A New Level Set Method for Topology Optimization of Distributed Compliant Mechanisms
,”
Int. J. Numer. Methods Eng.
,
91
(
8
), pp.
843
871
.
22.
Deepak
,
S. R.
,
Dinesh
,
M.
,
Sahu
,
D. K.
, and
Ananthasuresh
,
G. K.
,
2009
, “
A Comparative Study of the Formulations and Benchmark Problems for the Topology Optimization of Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
1
), p.
011003
.
23.
De Leon
,
D. M.
,
Alexandersen
,
J.
,
O. Fonseca
,
J. S.
, and
Sigmund
,
O.
,
2015
, “
Stress-Constrained Topology Optimization for Compliant Mechanism Design
,”
Struct. Multidiscipl. Optim.
,
52
(
5
), pp.
929
943
.
24.
Frecker
,
M. I.
,
Ananthasuresh
,
G. K.
,
Nishiwaki
,
S.
,
Kikuchi
,
N.
, and
Kota
,
S.
,
1997
, “
Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization
,”
ASME J. Mech. Des.
,
119
(
2
), pp.
238
245
.
25.
Christensen
,
P. W.
, and
Klarbring
,
A.
,
2010
,
An Introduction to Structural Optimization
,
Berlin Springer
,
Netherland
.
26.
Wang
,
F.
,
Lazarov
,
B. S.
, and
Sigmund
,
O.
,
2022
, “
Correction: On Projection Methods, Convergence and Robust Formulations in Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
65
(
10
), pp.
767
784
.
27.
Sigmund
,
O.
,
2011
, “
On the Usefulness of Non-Gradient Approaches in Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
43
(
5
), pp.
589
596
.
You do not currently have access to this content.