Abstract

The tendon−sheath mechanism (TSM) has garnered attention for its versatile applications in soft robotics, robotic hands, and surgical robots due to its adeptness in transmitting force through tortuous and narrow channels. However, the precise control of the TSM is challenging due to its shape-dependent deformation and force generation, highlighting the need to address shape variations in dynamic environments where direct measurement is impractical. This article introduces a novel methodology leveraging the concept of the equivalent circle in TSM to model its shape under varying conditions. The equivalent circle substitutes an arbitrarily shaped TSM with a circle, whose radius is derived from TSM's deformation and forces measured at the proximal end during calibration. This approach provides a concise and effective framework for understanding and analyzing the distinct characteristics of TSM. Additionally, a control strategy is proposed, utilizing the estimated equivalent circle to adapt to dynamic environments. Experimental results demonstrate promising performance without distal end sensory feedback, with mean percentage errors (MPE) of 0.78% and 2.33% for predicting cumulated curve angle and equivalent circle radius, respectively. Moreover, by utilizing the equivalent circle to calculate and feedforward deadband, effective control is achieved. The root mean square error (RMSE) reduced from 1.31 mm to an average of 0.19 mm in two feedforward experiments, representing an average reduction of 85.5%. These findings shed light on effective control strategies for TSM, offering valuable insights for robotics and surgical applications where TSM shape configurations are uncertain and subject to dynamic change.

References

1.
Yang
,
J.
,
Abdel-Malek
,
K.
, and
Potratz
,
J.
,
2005
, “
Design and Prototyping of an Active Hand Prosthetic Device
,”
Ind. Robot: An Int. J. Robot.
,
32
(
1
), pp.
71
78
.
2.
Makino
,
S.
,
Kawaharazuka
,
K.
,
Kawamura
,
M.
,
Asano
,
Y.
,
Okada
,
K.
, and
Inaba
,
M.
,
2017
, “
High-Power, Flexible, Robust Hand: Development of Musculoskeletal Hand Using Machined Springs and Realization of Self-Weight Supporting Motion with Humanoid
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vancouver, BC, Canada
,
Sept. 24–28
, pp.
1187
1192
.
3.
Phee
,
S. J.
,
Low
,
S. C.
,
Huynh
,
V. A.
,
Kencana
,
A. P.
,
Sun
,
Z. L.
, and
Yang
,
K.
,
2009
, “
Master and Slave Transluminal Endoscopic Robot (Master) for Natural Orifice Transluminal Endoscopic Surgery
,”
2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society
,
Minneapolis, MN
,
Sept. 3–6
, IEEE, Silver Spring, MD, pp.
1192
1195
.
4.
Perretta
,
S.
,
Dallemagne
,
B.
,
Barry
,
B.
, and
Marescaux
,
J.
,
2013
, “
The Anubiscope Flexible Platform Ready for Prime Time: Description of the First Clinical Case
,”
Surg. Endosc.
,
27
(
7
), p.
2630
.
5.
Phee
,
S.
,
Low
,
S.
,
Sun
,
Z.
,
Ho
,
K.
,
Huang
,
W.
, and
Thant
,
Z.
,
2008
, “
Robotic System for Noscar Gastrointestinal Surgery
,”
Int. J. Med. Robot. Comput. Assist. Surg.
,
4
(
1
), pp.
15
22
.
6.
Fuchs
,
K. H.
, and
Breithaupt
,
W.
,
2012
, “
Transgastric Small Bowel Resection With the New Multitasking Platform Endosamurai for Natural Orifice Transluminal Endoscopic Surgery
,”
Surg. Endosc.
,
26
(
8
), pp.
2281
2287
.
7.
Yang
,
X.-X.
,
Fu
,
S.-C.
,
Ji
,
R.
,
Li
,
L.-X.
,
Li
,
Y.-Q.
, and
Zuo
,
X.-L.
,
2022
, “
A Novel Flexible Auxiliary Single-arm Transluminal Endoscopic Robot Facilitates Endoscopic Submucosal Dissection of Gastric Lesions (with Video)
,”
Surg. Endosc.
,
36
(
7
), pp.
5510
5517
.
8.
Tay
,
G.
,
Tan
,
H. K.
,
Nguyen
,
T. K.
,
Phee
,
S. J.
, and
Iyer
,
N. G.
,
2018
, “
Use of the Endomaster Robot-Assisted Surgical System in Transoral Robotic Surgery: A Cadaveric Study
,”
Int. J. Med. Robot. Comput. Assist. Surg.
,
14
(
4
), p.
e1930
.
9.
Kim
,
B. G.
,
Choi
,
H. S.
,
Park
,
S. H.
,
Hong
,
J.
,
Lee
,
J. M.
,
Kim
,
S. H.
,
Chun
,
H. J.
,
Hong
,
D.
, and
Keum
,
B.
,
2019
, “
A Pilot Study of Endoscopic Submucosal Dissection Using an Endoscopic Assistive Robot in a Porcine Stomach Model
,”
Gut Liver
,
13
(
4
), pp.
402
408
.
10.
Palli
,
G.
, and
Melchiorri
,
C.
,
2006
, “
Model and Control of Tendon-Sheath Transmission Systems
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Orlando, FL
,
May 15–19
, pp.
988
993
.
11.
Phee
,
S. J.
,
Low
,
S.
,
Dario
,
P.
, and
Menciassi
,
A.
,
2010
, “
Tendon Sheath Analysis for Estimation of Distal end Force and Elongation for Sensorless Distal End
,”
Robotica
,
28
(
7
), pp.
1073
1082
.
12.
Wang
,
Z.
,
Sun
,
Z.
, and
Phee
,
S. J.
,
2013
, “
Modeling Tendon-Sheath Mechanism with Flexible Configurations for Robot Control
,”
Robotica
,
31
(
7
), pp.
1131
1142
.
13.
Sun
,
Z.
,
Wang
,
Z.
, and
Phee
,
S. J.
,
2014
, “
Elongation Modeling and Compensation for the Flexible Tendon-Sheath System
,”
IEEE/ASME Trans. Mechatron.
,
19
(
4
), pp.
1243
1250
.
14.
Kaneko
,
M.
,
Yamashita
,
T.
, and
Tanie
,
K.
,
1991
, “
Basic Considerations on Transmission Characteristics for Tendon Drive Robots
,”
IEEE International Conference on Advanced Robotics (ICAR)
,
Pisa, Italy
,
June 19–22
, pp.
827
832
.
15.
Fuxiang
,
T.
, and
Xingsong
,
W.
,
2008
, “
The Design of a Tendon-Sheath-Driven Robot
,”
IEEE International Conference on Mechatronics and Machine Vision in Practice(M2VIP)
,
Auckland, New Zealand
,
Dec. 2–4
, pp.
280
284
.
16.
Chen
,
L.
, and
Wang
,
X.
,
2012
, “
Modeling of the Tendon-Sheath Actuation System
,”
IEEE International Conference on Mechatronics and Machine Vision in Practice(M2VIP)
,
Auckland, New Zealand
,
Nov. 28–30
, pp.
489
494
.
17.
Li
,
J.
,
Wang
,
X.
, and
Xi
,
R.
,
2016
, “
Tip Force Tracking Control Based on the Tendon-Sheath Transmission Model and 3d Reconstruction of a Long Slender Rescue Robot
,”
IEEE International Workshop on Advanced Motion Control (AMC)
,
Auckland, New Zealand
,
Apr. 22–24
, pp.
448
454
.
18.
Lin
,
C.
,
Xingsong
,
W.
, and
Fuxiang
,
T.
,
2009
, “
Tendon-Sheath Actuated Robots and Transmission System
,”
Proceedings of the IEEE International Conference on Mechatronics and Automation (ICMA)
,
Changchun, China
,
Aug. 9–12
, pp.
3173
3178
.
19.
Sun
,
Z.
,
Wang
,
Z.
, and
Phee
,
S. J.
,
2015
, “
Modeling and Motion Compensation of a Bidirectional Tendon-Sheath Actuated System for Robotic Endoscopic Surgery
,”
Comput. Methods Programs Biomed
,
119
(
2
), pp.
77
87
.
20.
Wu
,
Q.
,
Wang
,
X.
,
Chen
,
L.
, and
Du
,
F.
,
2015
, “
Transmission Model and Compensation Control of Double-Tendon-Sheath Actuation System
,”
IEEE Trans. Ind. Electron.
,
62
(
3
), pp.
1599
1609
.
21.
Xu
,
W.
,
Poon
,
C. C.
,
Yam
,
Y.
, and
Chiu
,
P.
,
2017
, “
Motion Compensated Controller for a Tendonsheath-Driven Flexible Endoscopic Robot
,”
Int. J. Med. Robot. Comput Assist Surg.
,
13
(
1
), p.
e1747
.
22.
Hong
,
J.
,
Hong
,
D.
, and
Kim
,
B. G.
,
2020
, “
Modeling Backlash-Like Hysteresis of Tendon Sheath Mechanism-Pair
,”
ASME J. Mech. Robot.
,
12
(
4
), p.
041012
.
23.
Do
,
T.
,
Tjahjowidodo
,
T.
,
Lau
,
M.
, and
Phee
,
S. J.
,
2015
, “
Adaptive Control for Enhancing Tracking Performances of Flexible Tendon-Sheath Mechanism in Natural Orifice Transluminal Endoscopic Surgery
,”
Mechatronics
,
28
, pp.
67
78
.
24.
Do
,
T.
,
Tjahjowidodo
,
T.
,
Lau
,
M.
, and
Phee
,
S. J.
,
2016
, “
Real-Time Enhancement of Tracking Performances for Cable-Conduit Mechanisms-Driven Flexible Robots
,”
Robot. Comput.-Integr. Manuf.
,
37
, pp.
197
207
.
25.
Do
,
T. N.
,
Tjahjowidodo
,
T.
,
Lau
,
M. W. S.
, and
Phee
,
S. J.
,
2017
, “
Position Control of Asymmetric Nonlinearities for a Cable-Conduit Mechanism
,”
IEEE Trans. Autom. Sci. Eng.
,
14
(
3
), pp.
1515
1523
.
26.
Kim
,
J.
,
Kim
,
K.
,
Seo
,
Y.
,
Park
,
J.
,
Kim
,
B. G.
,
Choi
,
S.
,
Kim
,
C.
, and
Hong
,
D.
,
2023
, “
Distal end Force Estimation of Tendon-Sheath Mechanism Using a Spring Sheath
,”
Int. J. Precis. Eng. Manuf.
,
24
(
12
), pp.
2303
2315
.
27.
Li
,
X.
,
Cao
,
L.
,
Tiong
,
A. M. H.
,
Phan
,
P. T.
, and
Phee
,
S. J.
,
2019
, “
Distal-End Force Prediction of Tendon-Sheath Mechanisms for Flexible Endoscopic Surgical Robots Using Deep Learning
,”
Mech. Mach. Theory
,
134
, pp.
323
337
.
28.
Kang
,
B. B.
,
Kim
,
D.
,
Choi
,
H.
,
Jeong
,
U.
,
Kim
,
K. B.
,
Jo
,
S.
, and
Cho
,
K. J.
,
2020
, “
Learning Based Fingertip Force Estimation for Soft Wearable Hand Robot with Tendon-Sheath Mechanism
,”
IEEE Robot. Autom. Lett.
,
5
(
2
), pp.
946
953
.
29.
Kim
,
D.
,
Kim
,
H.
, and
Jin
,
S.
,
2022
, “
Recurrent Neural Network with Preisach Model for Configuration-Specific Hysteresis Modeling of Tendon-Sheath Mechanism
,”
IEEE Robot. Autom. Lett.
,
7
(
2
), pp.
2763
2770
.
30.
Do
,
T.
,
Tjahjowidodo
,
T.
,
Lau
,
M. W. S.
, and
Phee
,
S. J.
,
2014
, “
An Investigation of Frictionbased Tendon Sheath Model Appropriate for Control Purposes
,”
Mech. Syst. Signal Process
,
42
(
1−2
), pp.
97
114
.
31.
Do
,
T. N.
,
Tjahjowidodo
,
T.
,
Lau
,
M. W. S.
, and
Phee
,
S. J.
,
2014
, “
Dynamic Friction-Based Force Feedback for Tendon-Sheath Mechanism in Notes System
,”
Int. J. Comput. Electr. Eng.
,
6
(
3
), pp.
252
258
.
32.
Do
,
T.
,
Tjahjowidodo
,
T.
,
Lau
,
M. W. S.
, and
Phee
,
S. J.
,
2015
, “
A new Approach of Friction Model for Tendon-Sheath Actuated Surgical Systems: Nonlinear Modelling and Parameter Identification
,”
Mech. Mach. Theory
,
85
, pp.
14
24
.
You do not currently have access to this content.