Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Deployable structures are widely utilized in various fields due to their ability to switch between a deployed working state and a folded storage state. This paper presents a new method for achieving plate forms in deployable structures, allowing the formation of closed surfaces suitable for covering purposes. Initially, a novel one-degree-of-freedom (one-DOF) deployable network is proposed, employing Bennett linkages and Bennett-based 6R linkages. Subsequently, the shape of the links in the network is modified to obtain a plate form consisting of equilateral triangular panels. The paper also conducts kinematic analysis, motion property examination, and bifurcation condition discussion to demonstrate the folding properties of the proposed mechanism. Additionally, a modified scheme is proposed to enable the structure to form a closed surface, and physical prototypes are used to validate all the results. Overall, the proposed method presents new possibilities for developing practical and versatile deployable structures with broader applications.

References

1.
Doroftei
,
I. A.
,
Bujoreanu
,
C.
, and
Doroftei
,
I.
,
2018
, “
An Overview on the Applications of Mechanisms in Architecture. Part II: Foldable Plate Structures
,”
Proceedings of the 8th International Conference on Advanced Concepts in Mechanical Engineering, ACME 2018
,
Iasi, Romania
,
June 7–8
,
IOP Publishing Ltd
, p.
052019
.
2.
Doroftei
,
I. A.
,
Bujoreanu
,
C.
, and
Doroftei
,
I.
,
2018
, “
An Overview on the Applications of Mechanisms in Architecture. Part I: Bar Structures
,”
Proceedings of the 8th International Conference on Advanced Concepts in Mechanical Engineering, ACME 2018
,
Iasi, Romania
,
June 7–8
,
IOP Publishing Ltd
, p.
052018
.
3.
Tian
,
D. K.
,
Fan
,
X. D.
,
Zhang
,
J. W.
,
Jin
,
L.
,
Liu
,
R. Q.
, and
Zhang
,
Y.
,
2022
, “
Networking Method for the Structure of a Large Modular Deployable Space Antenna
,”
Int. J. Aerosp. Eng.
,
2022
, p.
4583374
.
4.
Meguro
,
A.
,
Shintate
,
K.
,
Usui
,
M.
, and
Tsujihata
,
A.
,
2009
, “
IN-Orbit Deployment Characteristics of Large Deployable Antenna Reflector Onboard Engineering Test Satellite VIII
,”
Acta Astronaut.
,
65
(
9–10
), pp.
1306
1316
.
5.
You
,
Z.
, and
Pellegrino
,
S.
,
1997
, “
Foldable Bar Structures
,”
Int. J. Solids Struct.
,
34
(
15
), pp.
1825
1847
.
6.
Lin
,
F.
,
Chen
,
C. Z.
,
Chen
,
J. B.
, and
Chen
,
M.
,
2019
, “
Modelling and Analysis for a Cylindrical Net-Shell Deployable Mechanism
,”
Adv. Struct. Eng.
,
22
(
15
), pp.
3149
3160
.
7.
Escrig
,
F.
, and
Valcarcel
,
J. P.
,
1993
, “
Geometry of Expandable Space Structures
,”
Int. J. Space Struct.
,
8
(
1–2
), pp.
71
84
.
8.
Dai
,
J. S.
,
Huang
,
Z.
, and
Lipkin
,
H.
,
2006
, “
Mobility of Overconstrained Parallel Mechanisms
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
220
229
.
9.
Chen
,
Y.
,
2003
, “
Design of Structural Mechanisms
,”
Doctor of Philosophy Dissertation Doctor of Philosophy Dissertation
,
University of Oxford
,
London
.
10.
Sarrus
,
P. F.
,
1853
, “
Note sur la Transformation des Mouvements Rectilignes Alternatifs, en Mouvements Circulaires, et Reciproquement
,”
Acad. Sci.
,
36
, pp.
1036
1038
.
11.
Bennett
,
G. T.
,
1903
, “
A New Mechanism
,”
Engineering
,
76
, pp.
777
778
.
12.
Bricard
,
R.
,
1927
,
Leçons de Cinématique
,
Gauthier-Villars
,
Paris
.
13.
Myard
,
F. E.
,
1931
, “
Contribution à la géométrie des systèmes articulés
,”
Bull. Soc. Math. France
,
59
, pp.
183
210
.
14.
Goldberg
,
M.
,
1943
, “
New Five-Bar and Six-Bar Linkages in Three Dimensions
,”
Trans. ASME
,
65
, pp.
649
663
.
15.
Lee
,
C. C.
, and
Dai
,
J. S.
,
2003
, “
Configuration Analysis of the Schatz Linkage
,”
Proc. Inst. Mech. Eng. Part C: J. Eng. Mech. Eng. Sci.
,
217
(
7
), pp.
779
786
.
16.
Wohlhart
,
K.
,
1987
, “
A New 6R Space Mechanism
,”
Proceedings of the 7th World Congress on the Theory of Machines and Mechanisms
,
Seville, Spain
, pp.
193
198
.
17.
Chen
,
Y.
, and
You
,
Z.
,
2005
, “
Mobile Assemblies Based on the Bennett Linkage
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
461
(
2056
), pp.
1229
1245
.
18.
Chen
,
Y.
, and
You
,
Z.
,
2007
, “
Curved-Profile Deployable Structures Based on Bennett Linkages
,”
Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Honolulu, HI
,
Apr. 23–26
,
American Institute of Aeronautics and Astronautics Inc.
, pp.
4962
4979
.
19.
Liu
,
S. Y.
, and
Chen
,
Y.
,
2009
, “
Myard Linkage and Its Mobile Assemblies
,”
Mech. Mach. Theory
,
44
(
10
), pp.
1950
1963
.
20.
Wohlhart
,
K.
, “
Double-Chain Mechanisms
,”
Proceedings of the IUTAM-IASS Symposium on Deployable Structures: Theory and Applications
,
Cambridge, UK
,
Sept. 6–9
,
S.
Pellegrino
, and
S. D.
Guest
, eds.,
Springer Netherlands
, pp.
457
466
.
21.
Huang
,
H. L.
,
Li
,
B.
,
Zhu
,
J. Y.
, and
Qi
,
X. Z.
,
2016
, “
A New Family of Bricard-Derived Deployable Mechanisms
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
034503
.
22.
Qi
,
X. Z.
,
Huang
,
H. L.
,
Miao
,
Z. H.
,
Li
,
B.
, and
Deng
,
Z. Q.
,
2017
, “
Design and Mobility Analysis of Large Deployable Mechanisms Based on Plane-Symmetric Bricard Linkage
,”
ASME J. Mech. Des.
,
139
(
2
), p.
022302
.
23.
Bouten
,
S.
, and
Belis
,
J.
,
2015
,
Transformable Structures and Their Architectural Application
,
Universiteit Ghent
,
Ghent, Belgium
.
24.
Zhang
,
X.
, and
Chen
,
Y.
,
2018
, “
The Diamond Thick-Panel Origami and the Corresponding Mobile Assemblies of Plane-Symmetric Bricard Linkages
,”
Mech. Mach. Theory
,
130
, pp.
585
604
.
25.
Song
,
X. K.
,
Guo
,
H. W.
,
Chen
,
J. J.
,
Yuan
,
W. H.
, and
Xu
,
Y. N.
,
2021
, “
Double-Layer Deployable Mechanical Network Constructed of Threefold-Symmetric Bricard Linkages and Sarrus Linkages
,”
ASME J. Mech. Rob.
,
13
(
6
), p.
061010
.
26.
Meng
,
Q.
,
Xie
,
F.
,
Tang
,
R.
, and
Liu
,
X.-J.
,
2023
, “
Deployable Polyhedral Mechanisms With Radially Reciprocating Motion Based on Novel Basic Units and an Additive-Then-Subtractive Design Strategy
,”
Mech. Mach. Theory
,
181
, p.
105174
.
27.
Meng
,
Q. Z.
,
Liu
,
X. J.
, and
Xie
,
F. G.
,
2022
, “
Structure Design and Kinematic Analysis of a Class of Ring Truss Deployable Mechanisms for Satellite Antennas Based on Novel Basic Units
,”
Mech. Mach. Theory
,
174
, p.
104881
.
28.
Meng
,
Q. Z.
,
Xie
,
F. G.
,
Tang
,
R. J.
, and
Liu
,
X. J.
,
2022
, “
Novel Closed-Loop Deployable Mechanisms and Integrated Support Trusses for Planar Antennas of Synthetic Aperture Radar
,”
Aerosp. Sci. Technol.
,
129
, p.
107819
.
29.
Lyu
,
S. N.
,
Yao
,
P. F.
,
Xiao
,
H.
,
Zhang
,
W. X.
, and
Ding
,
X. L.
,
2022
, “
Approximating Cylinders With Bundle-Folding Plane-Symmetric Bricard Linkages
,”
Int. J. Mech. Sci.
,
221
, p.
107231
.
30.
Lu
,
S.
,
Zlatanov
,
D.
, and
Ding
,
X.
,
2017
, “
Approximation of Cylindrical Surfaces With Deployable Bennett Networks
,”
ASME J. Mech. Rob.
,
9
(
2
), p.
021001
.
31.
Song
,
X.
,
Deng
,
Z.
,
Guo
,
H.
,
Liu
,
R.
,
Li
,
L.
, and
Liu
,
R.
,
2017
, “
Networking of Bennett Linkages and Its Application on Deployable Parabolic Cylindrical Antenna
,”
Mech. Mach. Theory
,
109
, pp.
95
125
.
32.
Yang
,
F. F.
,
You
,
Z.
, and
Chen
,
Y.
,
2020
, “
Mobile Assembly of Two Bennett Linkages and Its Application to Transformation Between Cuboctahedron and Octahedron
,”
Mech. Mach. Theory
,
145
, p.
103698
.
33.
Yang
,
F. F.
, and
Chen
,
Y.
,
2018
, “
One-DOF Transformation Between Tetrahedron and Truncated Tetrahedron
,”
Mech. Mach. Theory
,
121
, pp.
169
183
.
34.
Chen
,
Y.
,
Yang
,
F. F.
, and
You
,
Z.
,
2018
, “
Transformation of Polyhedrons
,”
Int. J. Solids Struct.
,
138
, pp.
193
204
.
35.
Wei
,
G. W.
,
Chen
,
Y.
, and
Dai
,
J. S.
,
2014
, “
Synthesis, Mobility, and Multifurcation of Deployable Polyhedral Mechanisms With Radially Reciprocating Motion
,”
ASME J. Mech. Des.
,
136
(
9
), p.
091003
.
36.
Wei
,
G. W.
, and
Dai
,
J. S.
,
2014
, “
A Spatial Eight-Bar Linkage and Its Association With the Deployable Platonic Mechanisms
,”
ASME J. Mech. Rob.
,
6
(
2
), p.
021010
.
37.
Wang
,
J. Y.
, and
Kong
,
X. W.
,
2019
, “
A Novel Method for Constructing Multimode Deployable Polyhedron Mechanisms Using Symmetric Spatial Compositional Units
,”
ASME J. Mech. Robot.
,
11
(
2
), p.
020907
.
38.
Wang
,
J. Y.
, and
Kong
,
X. W.
,
2018
, “
Deployable Polyhedron Mechanisms Constructed by Connecting Spatial Single-Loop Linkages of Different Types and/or in Different Sizes Using S Joints
,”
Mech. Mach. Theory
,
124
, pp.
211
225
.
39.
Wang
,
J. Y.
, and
Kong
,
X. W.
,
2018
, “
Deployable Mechanisms Constructed by Connecting Orthogonal Bricard Linkages, 8R or 10R Single-Loop Linkages Using S Joints
,”
Mech. Mach. Theory
,
120
, pp.
178
191
.
40.
Gu
,
Y.
,
Zhang
,
X.
,
Wei
,
G.
, and
Chen
,
Y.
,
2024
, “
Sarrus-Inspired Deployable Polyhedral Mechanisms
,”
Mech. Mach. Theory
,
193
, p.
105564
.
41.
Lin
,
W. W.
,
Yang
,
F. F.
, and
Zhang
,
J.
,
2022
, “
A Twofold-Symmetric Kirigami Pattern and Its Mobile Tessellations
,”
Mech. Mach. Theory
,
174
, p.
104916
.
42.
Callens
,
S. J. P.
, and
Zadpoor
,
A. A.
,
2018
, “
From Flat Sheets to Curved Geometries: Origami and Kirigami Approaches
,”
Mater. Today
,
21
(
3
), pp.
241
264
.
43.
Wang
,
F.
,
Guo
,
X.
,
Xu
,
J.
,
Zhang
,
Y.
, and
Chen
,
C. Q.
,
2017
, “
Patterning Curved Three-Dimensional Structures With Programmable Kirigami Designs
,”
ASME J. Appl. Mech.
,
84
(
6
), p.
061007
.
44.
Wang
,
C.
,
Li
,
J. L.
, and
Zhang
,
D. W.
,
2021
, “
Optimization Design Method for Kirigami-Inspired Space Deployable Structures With Cylindrical Surfaces
,”
Appl. Math. Model.
,
89
, pp.
1575
1598
.
45.
Zhang
,
Z.
,
Li
,
J.
,
Wang
,
C.
,
Guang
,
C.
,
Ni
,
Y.
, and
Zhang
,
D.
,
2024
, “
Design and Optimization of Kirigami-Inspired Rotational Parabolic Deployable Structures
,”
Int. J. Mech. Sci.
,
263
, p.
108788
.
46.
Tang
,
Y.
,
Li
,
Y.
,
Hong
,
Y.
,
Yang
,
S.
, and
Yin
,
J.
,
2019
, “
Programmable Active Kirigami Metasheets With More Freedom of Actuation
,”
Proc. Natl. Acad. Sci. USA
,
116
(
52
), pp.
26407
26413
.
47.
Choi
,
G. P. T.
,
Dudte
,
L. H.
, and
Mahadevan
,
L.
,
2019
, “
Programming Shape Using Kirigami Tessellations
,”
Nat. Mater.
,
18
(
9
), p.
999
1004
.
48.
Gao
,
Y.
,
Yang
,
F. F.
,
Chen
,
B. X.
, and
Zhang
,
J.
,
2022
, “
A Deployable Network With Identical Triangular Panels Based on a Special Twofold-Symmetric Bricard 6R Linkage
,”
Mech. Mach. Theory
,
178
, p.
105068
.
49.
Yang
,
F. F.
,
Gao
,
Y.
,
Lu
,
S. L.
, and
Chen
,
K. J.
,
2021
, “
A Mobile Bennett Network Constructed With Identical Square Panels
,”
ASME J. Mech. Des.
,
143
(
11
), p.
113301
.
50.
Denavit
,
J.
, and
Hartenberg
,
R.
,
1955
, “
A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices
,”
ASME J. Appl. Mech.
,
22
(
2
), pp.
215
221
.
51.
Chen
,
Y.
, and
You
,
Z.
,
2006
, “
Square Deployable Frames for Space Applications. Part 1: Theory
,”
Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng.
,
220
(
G4
), pp.
347
354
.
52.
Chen
,
Y.
, and
You
,
Z.
,
2009
, “
Two-Fold Symmetrical 6R Foldable Frame and Its Bifurcations
,”
Int. J. Solids Struct.
,
46
(
25–26
), pp.
4504
4514
.
53.
Gao
,
Y.
,
Yang
,
F.
, and
Zhang
,
J.
,
2022
, “
A Reconfigurable 6R Linkage With Six Motion Modes and Three Topological Structures
,”
ASME J. Mech. Rob.
,
15
(
5
), p.
054503
.
54.
Grünbaum
,
B.
, and
Shephard
,
G. C.
,
1986
,
Tilings and Patterns
,
W. H. Freeman and Company
,
New York
.
You do not currently have access to this content.