Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Head-following (tracking) issue is a challenge in developing multijoint continuum robots. However, various approaches have been developed in head-following algorithm for articulated-driven mechanism (ADM) continuum robots, and problems still exist such as low end accuracy, large trajectory deviation, and low computational efficiency. This article presents a novel head-following (NHF) algorithm with high precision, small trajectory deviation, and high computational efficiency for multijoint ADM continuum robots. The proposed algorithm first uses the follow-the-leader (FTL) method to search for planning points. Second, the end-effector errors are calculated, split, and adjusted. Third, the error judgment set is assigned based on the error rate of the end-effector, and also the joints that need to be adjusted are determined. Finally, the joint angles are iteratively adjusted. In this article, the NHF algorithm is simulated on ADM continuum robots with separately 10, 20, and 31 joints. The result shows that, comparing with other FTL algorithms, NHF algorithm has the highest end accuracy, and the smallest trajectory deviation.

References

1.
Iyengar
,
K.
,
Dwyer
,
G.
, and
Stoyanov
,
D.
,
2020
, “
Investigating Exploration for Deep Reinforcement Learning of Concentric Tube Robot Control
,”
Int. J. Comput. Assist. Radiol. Surg.
,
15
(
7
), pp.
1157
1165
.
2.
Kudryavtsev
,
A. V.
,
Chikhaoui
,
M. T.
,
Liadov
,
A.
,
Rougeot
,
P.
,
Spindler
,
F.
,
Rabenorosoa
,
K.
,
Burgner-Kahrs
,
J.
,
Tamadazte
,
B.
, and
Andreff
,
N.
,
2018
, “
Eye-in-Hand Visual Servoing of Concentric Tube Robots
,”
IEEE Robot. Autom. Lett.
,
3
(
3
), pp.
2315
2321
.
3.
Mohammad
,
A.
,
Russo
,
M.
,
Fang
,
Y.
,
Dong
,
X.
,
Axinte
,
D. A.
, and
Kell
,
J.
,
2021
, “
An Efficient Follow-the-Leader Strategy for Continuum Robot Navigation and Coiling
,”
IEEE Robot. Autom. Lett.
,
6
(
4
), pp.
7493
7500
.
4.
Barrientos-Dieza
,
J.
,
Dong
,
X.
,
Axinte
,
D.
, and
Kell
,
J.
,
2020
, “
Real-Time Kinematics of Continuum Robots: Modelling and Validation
,”
Robot. Comput. Integr. Manuf.
,
67
, pp.
149
160
.
5.
Dong
,
X.
,
Axinte
,
D. A.
,
Palmer
,
D.
,
Hernández Cobos
,
S.
,
Raffles
,
M.
,
Rabani
,
A.
, and
Kell
,
J.
,
2017
, “
Development of a Slender Continuum Robotic System for On-Wing Inspection/Repair of Gas Turbine Engines
,”
Robot. Comput. Integr. Manuf.
,
44
, pp.
218
229
.
6.
Buckingham
,
R.
, and
Graham
,
A.
,
2012
, “
Nuclear Snake-Arm Robots
,”
Ind. Rob.
,
39
(
1
), pp.
6
11
.
7.
Buckingham
,
R.
, and
Graham
,
A.
,
2010
, “
Dexterous Manipulators for Nuclear Inspection and Maintenance—Case Study
,”
2010 1st International Conference on Applied Robotics for the Power Industry
,
Delta Centre-Ville Montréal, Canada
,
Oct. 5–7
, pp.
1
6
.
8.
Qin
,
G.
,
Ji
,
A.
,
Cheng
,
Y.
,
Zhao
,
W.
,
Pan
,
H.
,
Shi
,
S.
, and
Song
,
Y.
,
2021
, “
A Snake-Inspired Layer-Driven Continuum Robot
,”
Soft Rob.
,
9
(
4
), pp.
788
779
.
9.
William
,
R. L.
, II
, and
Tamasi
,
G
,
1996
, “
Follow-the-Leader Control for the Payload Inspection and Processing System
,”
Proceedings of The 1996 ASME Design Engineering Technical Conferences and Computers in Engineering Conference
,
Irvine, CA
,
Aug. 18–22
.
10.
Kenwright
,
B.
,
2012
, “
Inverse Kinematics—Cyclic Coordinate Descent (CCD)
,”
J. Graph. Tools
,
16
(
4
), pp.
177
217
.
11.
Mukundan
,
R.
,
2009
, “
A Robust Inverse Kinematics Algorithm for Animating a Joint Chain
,”
Int. J. Comput. Appl. Technol.
,
34
(
4
), pp.
303
308
.
12.
Mahmudi
,
M.
, and
Kallmann
,
M.
,
2011
, “
Feature-Based Locomotion With Inverse Branch Kinematics
,”
Proceedings of the 4th International Conference on Motion in Games (MIG'11)
,
Edinburgh, UK
,
Nov. 13–15
, pp.
39
50
.
13.
Sreenivasan
,
S.
,
Goel
,
P.
, and
Ghosal
,
A.
,
2007
, “
Redundancy Resolution Using a Tractrix and its Application to Real-Time Simulations of Hyper-Redundant Manipulators, Snakes and Tying of Knots
,”
Proceedings of the 12th IFToMM World Congress
,
Besancon
,
June 18–21
, pp.
524
521
.
14.
Aristidou
,
A.
, and
Lasenby
,
J.
,
2011
, “
FABRIK: A Fast, Iterative Solver for the Inverse Kinematics Problem
,”
Graph. Model.
,
73
(
5
), pp.
243
260
.
15.
Ananthanarayanan
,
H.
, and
Ordóñez
,
R.
,
2015
, “
Real-Time Inverse Kinematics of (2n + 1) DOF Hyper-Redundant Manipulator Arm via a Combined Numerical and Analytical Approach
,”
Mech. Mach. Theory
,
91
(
4
), pp.
209
226
.
16.
Xie
,
H.
,
Wang
,
C.
,
Li
,
S.
,
Hu
L.
, and
Yang
,
H.
,
2019
, “
A Geometric Approach for Follow-the-Leader Motion of Serpentine Manipulator
,”
Int. J. Adv. Robot. Syst.
,
16
(
5
), p.
172988141987463
.
17.
Xiong
,
Z.
,
Tao
,
J.
, and
Liu
,
C.
,
2018
, “
Inverse Kinematics of Hyper-Redundant Snake-Arm Robots With Improved Tip Following Movement
,”
Robot
,
40
(
1
), pp.
37
45
.
18.
Tang
,
L.
,
Zhu
,
L.
,
Zhu
,
X.
, and
Gu
,
G.
,
2018
, “
A Serpentine Curve Based Motion Planning Method for Cable-Driven Snake Robots
,”
Proceedings of the 25th International Conference on Mechatronics and Machine Vision in Practice (M2VIP)
,
Springer-Verlag
,
Berlin, Heidelberg
,
Nov. 20–22
, pp.
1
6
.
19.
Guochen
,
N.
,
Li
,
W.
,
Qingji
,
G.
, and
Dandan
,
H.
,
2014
, “
Path-Tracking Algorithm for Aircraft Fuel Tank Inspection Robots
,”
Int. J. Adv. Robot. Syst.
,
11
(
5
), p.
82
.
20.
Niu
,
G.
,
Zhang
,
Y.
, and
Li
,
W.
,
2020
, “
Path Planning of Continuum Robot Based on Path Fitting
,”
J. Control Sci. Eng.
,
2020
(
5
), pp.
1
11
.
21.
Shen
,
T.
,
Nelson
,
C. A.
,
Warburton
,
K.
, and
Oleynikov
,
D.
,
2015
, “
Design and Analysis of a Novel Articulated Drive Mechanism for Multifunctional NOTES Robot
,”
ASME J. Mech. Rob.
,
7
(
1
), p.
011004
.
22.
Hannan
,
M. W.
, and
Walker
,
I. D.
,
2003
, “
Kinematics and the Implementation of an Elephant’s Trunk Manipulator and Other Continuum Style Robots
,”
J. Robot. Syst.
,
20
(
2
), pp.
45
63
.
23.
Aristidou
,
A.
,
Lasenby
,
J.
,
Chrysanthou
,
Y.
, and
Shamir
,
A.
,
2018
, “
Inverse Kinematics Techniques in Computer Graphics: A Survey
,”
Comput. Graph. Forum
,
37
(
6
), pp.
35
58
.
You do not currently have access to this content.