Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This article deals with the development of a 6-degrees-of-freedom (DoF) hybrid interface for a teleoperated robotic platform intended to assist surgeons in cervical spine surgery. The targeted task is the drilling of cervical vertebrae for the attachment of spinal implants. Given the complex anatomy of the cervical region, with the proximity of the spinal cord and vertebral arteries, high accuracy in the drilling procedure is required to avoid complications for the patient. In this context, the proposed hybrid interface has been designed to meet the requirements of the drilling task, in terms of degrees of freedom, workspace, and force feedback, which have been identified through a literature review. It consists of an association of two parallel mechanisms and a centrally located serial mechanism. Direct and inverse kinematic modeling of each mechanism and one of the complete interfaces were carried out. A study of the dexterity distribution of the parallel mechanisms was carried out to select the suitable interface working mode that would keep the singularities away from the prescribed workspace. In addition, the force feedback was implemented in static mode, neglecting in the first time the weight of the system. The interface design parameters were then optimized to avoid singularities within the prescribed workspace, to minimize motor torques, and to reduce the size of the interface. These development stages led to the design of a motorized prototype of the hybrid interface.

References

1.
Farooq Usmani
,
M.
,
Gopinath
,
R.
,
Camacho
,
J. E.
,
Gentry
,
R. D.
, and
Ludwig
,
S. C.
,
2020
, “
Management of Cranio-Cervical Injuries: C1-C2 Posterior Cervical Fusion and Decompression
,”
Semin. Spine Surg.
,
32
(
1
), p.
100782
.
2.
Molliqaj
,
G.
,
Paun
,
L.
,
Nouri
,
A.
,
Girod
,
P.-P.
,
Schaller
,
K.
, and
Tessitore
,
E.
,
2020
, “
Role of Robotics in Improving Surgical Outcome in Spinal Pathologies
,”
World Neurosurg.
,
140
, pp.
664
673
.
3.
Avrumova
,
F.
,
Sivaganesan
,
A.
,
Alluri
,
R. K.
,
Vaishnav
,
A.
,
Qureshi
,
S.
, and
Lebl
,
D. R.
,
2021
, “
Work-Flow and Efficiency of Robotic-Assisted Navigation in Spine Surgery
,”
HSS J.
,
17
(
3
), pp.
302
307
.
4.
Koszulinski
,
A.
,
Sandoval
,
J.
,
Vendeuvre
,
T.
,
Zeghloul
,
S.
, and
Laribi
,
M. A.
,
2022
, “
Comanipulation Robotic Platform for Spine Surgery with Exteroceptive Visual Coupling: Development and Experimentation
,”
ASME J. Med. Devices
,
16
(
4
), p.
041002
.
5.
Koszulinski
,
A.
,
Sandoval
,
J.
, and
Laribi
,
M. A.
,
2023
, “Design and Modelisation of a 6 Degrees of Freedom Interface With Repositionable Centre of Rotation,”
New Advances in Mechanisms, Transmissions and Applications. MeTrApp 2023, Mechanisms and Machine Science
,
M. A.
Laribi
,
C. A.
Nelson
,
M.
Ceccarelli
, and
S.
Zeghloul
, eds., Vol.
124
,
Springer
,
Cham
, pp.
286
296
.
6.
Ewerton
,
M.
,
Rother
,
D.
,
Weimar
,
J.
,
Kollegger
,
G.
,
Wiemeyer
,
J.
,
Peters
,
J.
, and
Maeda
,
G.
,
2018
, “
Assisting Movement Training and Execution With Visual and Haptic Device
,”
Front. Ueurorobot.
,
12
, pp.
12
24
.
7.
Rhienmora
,
P.
,
Haddawy
,
P.
,
Dailey
,
M.
,
Khanal
,
P.
, and
Suebnukarn
,
S.
,
2008
, “
Development of a Dental Skills Training Simulator Using Virtual Reality and Haptic Device
,”
NECTEC Tech. J.
,
8
(
20
), pp.
140
147
.
8.
Gautreau
,
E.
,
Sandoval
,
J.
,
Thomas
,
A.
,
Guilhem
,
J.-M.
,
Carbone
,
G.
,
Zeghloul
,
S.
, and
Laribi
,
M. A.
,
2022
, “
Redundancy Exploitation of an 8-DoF Robotic Assistant for Doppler Sonography
,”
Actuators
,
11
(
2
), p.
33
.
9.
Abeywardena
,
S.
, and
Chen
,
C.
,
2017
, “
Implementation and Evaluation of a Three-Legged Six-Degrees-of-Freedom Parallel Mechanism as an Impedance-Type Haptic Device
,”
IEEE/ASME Trans. Mechatron.
,
22
(
3
), pp.
1412
1422
.
10.
Meskini
,
M.
,
Saafi
,
H.
,
Mlika
,
A.
,
Arsicault
,
M.
,
Zeghloul
,
S.
, and
Laribi
,
M. A.
,
2023
, “
Development of a Novel Hybrid Haptic (nHH) Device With a Remote Center of Rotation Dedicated to Laparoscopic Surgery
,”
Robotica
,
41
(
10
), pp.
3175
3194
.
11.
Goel
,
A.
,
Desai
,
K. I.
, and
Muzumdar
,
D. P.
,
2002
, “
Atlantoaxial Fixation Using Plate and Screw Method: A Report of 160 Treated Patients
,”
Neurosurgery
,
51
(
6
), pp.
1351
1357
.
12.
Simsek
,
S.
,
Yigitkanli
,
K.
,
Seçkin
,
H.
,
Comert
,
A.
,
Acar
,
H. I.
,
Belen
,
D.
,
Tekdemir
,
I.
, and
Elhan
,
A.
,
2009
, “
Ideal Screw Entry Point and Projection Angles for Posterior Lateral Mass Fixation of the Atlas: An Anatomical Study
,”
Eur. Spine J.
,
18
(
9
), pp.
1321
1325
.
13.
Merola
,
A. A.
,
Castro
,
B. A.
,
Alongi
,
P. R.
,
Mathur
,
S.
,
Brkaric
,
M.
,
Vigna
,
F.
,
Riina
,
J. P.
,
Gorup
,
J.
, and
Haher
,
T.
,
2002
, “
Anatomic Consideration for Standard and Modified Techniques of Cercial Lateral Mass Screw Placement
,”
Spine J.
,
2
(
6
), pp.
430
435
.
14.
Abdullah
,
K. G.
,
Nowacki
,
A. S.
,
Steinmetz
,
M. P.
,
Wang
,
J. C.
, and
Mroz
,
T. E.
,
2011
, “
Factors Affecting Lateral Mass Screw Placement at C-7: Clinical Article
,”
J. Neurosurg. Spine
,
14
(
3
), pp.
405
411
.
15.
Ebraheim
,
N. A.
,
Treamins
,
M. R.
,
Xu
,
R.
, and
Yeasting
,
R. A.
,
1998
, “
Lateral Radiologic Evaluation of Lateral Mass Screw Placement in the Cervical Spine
,”
Spine
,
23
(
4
), pp.
458
462
.
16.
Xu
,
R.
,
Ebraheim
,
N. A.
,
Klausner
,
T.
, and
Yeasting
,
R. A.
,
1998
, “
Modified Magerl Technique of Lateral Mass Screw Placement in the Lower Cervical Spine: An Anatomic Study
,”
J. Spinal Disord.
,
11
(
3
), pp.
237
240
.
17.
Liu
,
G.
,
Xu
,
R.
,
Ma
,
W.
,
Sun
,
S.
, and
Feng
,
J.
,
2011
, “
Anatomical Considerations for the Placement of Cervical Transarticular Screws: Laboratory Investigation
,”
J. Neurosurg. Spine
,
14
(
1
), pp.
114
121
.
18.
Senoglu
,
M.
,
Safavi-Abbasi
,
S.
,
Theodore
,
N.
,
Crawford
,
N. R.
, and
Sonntag
,
V. K. H.
,
2010
, “
Feasible and Accurate Occipitoatlantal Transarticular Fixation: An Anatomic Study
,”
Neurosurgery
,
66
(
3
), pp.
173
177
.
19.
Xu
,
R.
,
Zhao
,
L.
,
Chai
,
B.
,
Ma
,
W.
,
Xia
,
H.
,
Wang
,
G.
, and
Jiang
,
W.
,
2009
, “
Lateral Radiological Evaluation of Transarticular Screw Placement in the Lower Cervical Spine
,”
Eur. Spine J.
,
18
(
3
), pp.
392
397
.
20.
Lee
,
K. M.
,
Yeom
,
J. S.
,
Lee
,
J. O.
,
Buchowski
,
J. M.
,
Park
,
K.-W.
,
Chang
,
B.-S.
,
Lee
,
C.-K.
, and
Riew
,
K. D.
,
2010
, “
Optimal Trajectory for the Atlantooccipital Transarticular Screw
,”
Spine
,
35
(
16
), pp.
1562
1570
.
21.
Zhao
,
L.
,
Xu
,
R.
,
Liu
,
J.
,
Sochacki
,
K. R.
,
Ma
,
W.
,
Jiang
,
W.
,
Liu
,
G.
,
Cao
,
J.
, and
Hua
,
Q.
,
2012
, “
The Study on Comparison of 3 Techniques for Transarticular Screw Placement in the Lower Cervical Spine
,”
Spine
,
37
(
8
), pp.
468
472
.
22.
Cassinelli
,
E. H.
,
Lee
,
M.
,
Skalak
,
A.
,
Ahn
,
N. U.
, and
Wright
,
N. M.
,
2006
, “
Anatomic Considerations for the Placement of C2 Laminar Screws
,”
Spine
,
31
(
24
), pp.
2767
2771
.
23.
Ma
,
X.-Y.
,
Yin
,
Q.-S.
,
Wu
,
Z.-H.
,
Xia
,
H.
,
Riew
,
K. D.
, and
Liu
,
J.-F.
,
2010
, “
C2 Anatomy and Dimensions Relative to Translaminar Screw Placement in an Asian Population
,”
Spine
,
35
(
6
), pp.
704
708
.
24.
Saetia
,
K.
, and
Phankhongsab
,
A.
,
2014
, “
C2 Anatomy for Translaminar Screw Placement Based on Computerized Tomographic Measurements
,”
Asian Spine J.
,
9
(
2
), pp.
205
209
.
25.
Wang
,
M. Y.
,
2006
, “
C2 Crossing Laminar Screws: Cadaveric Morphometric Analysis
,”
Neurosurgery
,
59
(
1
), pp.
84
88
.
26.
Ji
,
W.
,
Liu
,
X.
,
Huang
,
W.
,
Huang
,
Z.
,
Li
,
X.
,
Chen
,
J.
,
Wu
,
Z.
, and
Zhu
,
Q.
,
2015
, “
Feasibility of C2 Vertebra Screws Placement in Patient With Occipitalization of Atlas: A Tomographic Study
,”
Medicine
,
94
(
7
), p.
1492
.
27.
Yue
,
B.
,
Kwak
,
D.-S.
,
Kim
,
M.-K.
,
Kwon
,
S.-O.
, and
Han
,
S.-H.
,
2010
, “
Morphometric Trajectory Analysis for the C2 Crossing Laminar Screw Technique
,”
Eur. Spine J.
,
19
(
5
), pp.
828
832
.
28.
Kong
,
G.
,
Ji
,
W.
,
Huang
,
Z.
,
Liu
,
J.
,
Chan
,
J.
, and
Zhu
,
Q.
,
2017
, “
The Risk of Translaminar Screw Fixation to the Transverse Foramen of the Lower Cervical Spine: A Computed Tomography Study
,”
Sci. Rep.
,
7
(
1
), p.
46611
.
29.
Tan
,
K.-A.
,
Lin
,
S.
,
Chin
,
B. Z.
,
Thadani
,
V. N.
, and
Hey
,
H. W. D.
,
2020
, “
Anatomic Techniques for Cervical Pedicle Screw Placement
,”
J. Spine Surg.
,
6
(
1
), pp.
262
273
.
30.
Faghih-Jouibari
,
M.
,
Moazzeni
,
K.
,
Amini-Navai
,
A.
,
Hanaei
,
S.
,
Abdollahzadeh
,
S.
, and
Khanmohammadi
,
R.
,
2016
, “
Anatomical Considerations for Insertion of Pedicular Screw in Cervicothoracic Junction
,”
Iran. J. Neurosurg.
,
15
(
4
), pp.
228
231
.
31.
Abumi
,
K.
,
2015
, “
Cervical Spondylotic Myelopathy: Posterior Decompression and Pedicle Screw Fixation
,”
Eur. Spine J.
,
24
(
2
), pp.
186
196
.
32.
Abumi
,
K.
,
Itoh
,
H.
,
Taneichi
,
H.
, and
Kaneda
,
K.
,
1994
, “
Transpedicular Screw Fixation for Traumatic Lesions of the Middle and Lower Cervical Spine
,”
J. Spinal Disord.
,
7
(
1
), pp.
19
28
.
33.
Yoon
,
S.-D.
,
Lee
,
J. Y.
,
Lee
,
I.-S.
,
Moon
,
S. M.
,
Cho
,
B. M.
,
Park
,
S.-H.
, and
Oh
,
S.-M.
,
2013
, “
Cervical Pedicle Screw Placement in Sawbone Models and Unstable Cervical Traumatic Lesions by Using Para-Articular Mini-Laminotomy: A Novice Neurosurgeon's Experience
,”
Korean J. Neurotrauma
,
9
(
2
), pp.
106
113
.
34.
Panjabi
,
M. M.
,
Duranceau
,
J.
,
Goel
,
V.
,
Oxland
,
T.
, and
Takata
,
K.
,
1990
, “
Cervical Human Vertebrae Quantitative Three-Dimensional Anatomy of the Middle and Lower Regions
,”
Spine
,
16
(
8
), pp.
861
869
.
35.
Richter
,
M.
,
Cakir
,
B.
, and
Schmidt
,
R.
,
2005
, “
Cervical Pedicle Screws: Conventional Versus Computer-Assisted Placement of Cannulated Screws
,”
Spine
,
30
(
20
), pp.
2280
2287
.
36.
Tian
,
W.
,
Han
,
X.
,
Liu
,
B.
,
Liu
,
Y.
,
Hu
,
Y.
,
Han
,
X.
,
Xu
,
Y.
,
Fan
,
M.
, and
Jin
,
H.
,
2013
, “
A Robot-Assisted Surgical System Using a Force-Image Control Method for Pedicle Screw Insertion
,”
PLoS One
,
9
(
1
), p.
e86346
.
37.
Wolf
,
A.
,
Shoham
,
M.
,
Michael
,
S.
, and
Moshe
,
R.
,
2004
, “
Feasibility Study of a Mini, Bone-Attached, Robotic System for Spinal Operations
,”
Spine
,
29
(
2
), pp.
220
228
.
38.
Matsumiya
,
K.
,
Momoi
,
Y.
,
Kobayashi
,
E.
,
Sugano
,
N.
,
Yonenobu
,
K.
,
Inada
,
H.
,
Tsuji
,
T.
, and
Sakuma
,
I.
,
2003
, “
Forces and Torques During Robotic Needle Insertion to Human Vertebra
,”
Int. Congr. Ser.
,
1256
, pp.
492
497
.
39.
Wolf
,
A.
,
Shoham
,
M.
,
Michael
,
S.
, and
Moshe
,
R.
,
2001
, “
Morphometric Study of the Human Lumbar Spine for Operation-Workspace Specifications
,”
Spine
,
26
(
22
), pp.
2472
2477
.
40.
Rezazadeh
,
S.
,
Bai
,
W.
,
Sun
,
M.
,
Chan
,
S.
,
Lin
,
Y.
, and
Cao
,
Q.
,
2019
, “
Robotic Spinal Surgery System With Force Feedback for Teleoperated Drilling
,”
J. Eng.
,
2019
(
14
), pp.
500
505
.
41.
Jin
,
H.
,
Hu
,
Y.
,
Tian
,
W.
,
Zhang
,
P.
,
Zhang
,
J.
, and
Li
,
B.
,
2014
, “
Safety Analysis and Control of a Robotic Spinal Surgical System
,”
Mechatronics
,
24
(
1
), pp.
55
65
.
42.
Hu
,
Y.
,
Jin
,
H.
,
Zhang
,
L.
,
Zhang
,
P.
, and
Zhang
,
J.
,
2014
, “
State Recognition of Pedicle Drilling With Force Sensing in a Robotic Spinal Surgical System
,”
IEEE/ASME Trans. Mechatron.
,
19
(
1
), pp.
357
365
.
43.
Powers
,
M. J.
,
2006
, “
The Mechanics of Bone Drilling: Experiment and Finite Element Predictions
,”
Ph.D. thesis
,
University of Calgary
,
Calgary, Alberta, Canada
.
44.
Gosselin
,
C. M.
,
Sefrioui
,
J.
, and
Richard
,
M. J.
,
1992
, “
Solutions Polynomiales au Problème de la Cinématique Directe des Manipulateurs Parallèles Plans à Trois Degrés de Liberté
,”
Mech. Mach. Theory
,
27
(
2
), pp.
107
119
.
45.
Merlet
,
J.-P.
,
1993
, “
Algebraic-Geometry Tools for the Study of Kinematics of Parallel Manipulators
,”
Comput. Kinematics
,
28
, pp.
183
194
.
46.
Alba-Gomez
,
O.
,
Wenger
,
P.
, and
Pamanes
,
A.
,
2005
, “
Consistent Kinetostatic Indices for Planar3-DOF Parallel Manipulators, Application to the Optimal Kinematic Inversion
,”
Proceedings of the ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 7: 29th Mechanisms and Robotics Conference, Parts A and B
,
Long Beach, CA
,
Sept. 24–28
, Vol.
7
, pp.
765
774
.
47.
Quintero-Riaza
,
H. F.
,
Mejía-Calderón
,
L. A.
, and
Díaz-Rodríguez
,
M.
,
2019
, “
Synthesis of Planar Parallel Manipulators Including Dexterity, Force Transmission and Stiffness Index
,”
Mech. Based Des. Struct. Mach.
,
47
(
6
), pp.
680
702
.
48.
Simplex motion
, “
Integrated Servomotors
,” https://simplexmotion.com/integrated-servomotors/se-series/, Accessed October 15, 2023.
You do not currently have access to this content.