Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

A traditional deployable articulated mast mechanism can only provide one-dimensional (1D) deploying-folding motion. This paper aims to investigate the design and analysis of a novel deployable articulated mast mechanism with two-dimensional (2D) deploying-folding motion. First, the topological motion of deployable mast mechanisms that can provide 2D deploying-folding motion is analyzed, and a potential rectangular prism linkage unit is presented to construct single degree-of-freedom (DOF) deployable mast mechanisms with 2D deploying-folding motion. Second, the kinematics of the new deployable mast mechanism is established based on its structural symmetry and modular features. Third, the deploying dynamics of the new mechanism are built based on the Lagrange equation. Fourth, the deployed/folded ratio, interference, and singularity of the new mechanism are analyzed. Finally, a numerical example is used to illustrate the effectiveness of the theoretical analysis, and a physical prototype is developed to show the fabrication feasibility of the new deployable mechanism. Compared with the traditional counterparts with 1D deploying-folding motion, the new deployable mast mechanism has a larger deployed/folded ratio, which has a good application prospect in space missions to support solar arrays, magnetometers, cameras, and antennas.

References

1.
Durrieu
,
S.
, and
Nelson
,
R. F.
,
2013
, “
Earth Observation From Space—The Issue of Environmental Sustainability
,”
Space Policy
,
29
(
4
), pp.
238
250
.
2.
Jones
,
P. A.
, and
Spence
,
B. R.
,
2011
, “
Spacecraft Solar Array Technology Trends
,”
IEEE Aerosp. Electron. Syst. Mag.
,
26
(
8
), pp.
17
28
.
3.
Lu
,
S.
,
Zlatanov
,
D.
,
Ding
,
X.
, and
Molfino
,
R.
,
2014
, “
A New Family of Deployable Mechanisms Based on the Hoekens Linkage
,”
Mech. Mach. Theory
,
73
, pp.
130
153
.
4.
Roovers
,
K.
, and
De Temmerman
,
N.
,
2017
, “
Deployable Scissor Grids Consisting of Translational Units
,”
Int. J. Solids Struct.
,
121
, pp.
45
61
.
5.
Huang
,
H. L.
,
Li
,
B.
,
Zhang
,
T. S.
,
Zhang
,
Z.
,
Qi
,
X. Z.
, and
Hu
,
Y.
,
2019
, “
Design of Large Single-Mobility Surface-Deployable Mechanism Using Irregularly Shaped Triangular Prismoid Modules
,”
ASME J. Mech. Des.
,
141
(
1
), p.
012301
.
6.
Guo
,
J.
,
Zhao
,
Y.
,
Xu
,
Y.
,
Zhang
,
G.
, and
Yao
,
J.
,
2020
, “
A Novel Modular Deployable Mechanism for the Truss Antenna: Assembly Principle and Performance Analysis
,”
Aerosp. Sci. Technol.
,
105
, p.
105976
.
7.
Kiper
,
G.
,
Söylemez
,
E.
, and
Kişisel
,
A. U. Ö.
,
2008
, “
A Family of Deployable Polygons and Polyhedra
,”
Mech. Mach. Theory
,
43
(
5
), pp.
627
640
.
8.
Wei
,
G. W.
,
Chen
,
Y.
, and
Dai
,
J. S.
,
2014
, “
Synthesis, Mobility, and Multifurcation of Deployable Polyhedral Mechanisms With Radially Reciprocating Motion
,”
ASME J. Mech. Des.
,
136
(
9
), p.
091003
.
9.
Huang
,
H.
,
Li
,
B.
,
Zhu
,
J.
, and
Qi
,
X.
,
2016
, “
A New Family of Bricard-Derived Deployable Mechanisms
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
034503
.
10.
St-Onge
,
D.
, and
Gosselin
,
C.
,
2016
, “
Synthesis and Design of a One Degree-of-Freedom Planar Deployable Mechanism With a Large Expansion Ratio
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021025
.
11.
Ding
,
X.
,
Yang
,
Y.
, and
Dai
,
J. S.
,
2013
, “
Design and Kinematic Analysis of a Novel Prism Deployable Mechanism
,”
Mech. Mach. Theory
,
63
, pp.
35
49
.
12.
Zhao
,
J.-S.
,
Chu
,
F.
, and
Feng
,
Z.-J.
,
2009
, “
The Mechanism Theory and Application of Deployable Structures Based on SLE
,”
Mech. Mach. Theory
,
44
(
2
), pp.
324
335
.
13.
Li
,
R.
,
Yao
,
Y.-A.
, and
Kong
,
X.
,
2016
, “
A Class of Reconfigurable Deployable Platonic Mechanisms
,”
Mech. Mach. Theory
,
105
, pp.
409
427
.
14.
Deng
,
Z.
,
Huang
,
H.
,
Li
,
B.
, and
Liu
,
R.
,
2011
, “
Synthesis of Deployable/Foldable Single Loop Mechanisms With Revolute Joints
,”
ASME J. Mech. Rob.
,
3
(
3
), p.
031006
.
15.
Wang
,
J.
, and
Kong
,
X.
,
2018
, “
Deployable Mechanisms Constructed by Connecting Orthogonal Bricard Linkages, 8R or 10R Single-Loop Linkages Using S Joints
,”
Mech. Mach. Theory
,
120
, pp.
178
191
.
16.
Qi
,
X.
,
Huang
,
H.
,
Li
,
B.
, and
Deng
,
Z.
,
2016
, “
A Large Ring Deployable Mechanism for Space Satellite Antenna
,”
Aerosp. Sci. Technol.
,
58
, pp.
498
510
.
17.
Cao
,
W.-A.
,
Yang
,
D. H.
, and
Ding
,
H. F.
,
2017
, “
A New Family of Deployable Mechanisms Derived From Two-Layer and Two-Loop Spatial Linkages With Five Revolute Pair Coupling Chains
,”
ASME J. Mech. Rob.
,
9
(
6
), p.
061016
.
18.
Cao
,
W.-A.
,
Yang
,
D.
, and
Ding
,
H.
,
2018
, “
Topological Structural Design of Umbrella-Shaped Deployable Mechanisms Based on New Spatial Closed-Loop Linkage Units
,”
ASME J. Mech. Des.
,
140
(
6
), p.
062302
.
19.
Cao
,
W.-A.
,
Jing
,
Z.
, and
Ding
,
H.
,
2020
, “
A General Method for Kinematics Analysis of Two-Layer and Two-Loop Deployable Linkages With Coupling Chains
,”
Mech. Mach. Theory
,
152
, p.
103945
.
20.
Wang
,
B.
,
Zhu
,
J.
,
Zhong
,
S.
,
Liang
,
W.
, and
Guan
,
C.
,
2023
, “
Space Deployable Mechanics: A Review of Structures and Smart Driving
,”
Mater. Des.
,
237
, p.
112557
.
21.
Guo
,
H.
,
Liu
,
R.
,
Deng
,
Z.
, and
Zhang
,
J.
,
2011
, “
Dynamic Characteristic Analysis of Large Space Deployable Articulated Mast
,”
Procedia Eng.
,
16
, pp.
716
722
.
22.
Bowden
,
M.
, and
Benton
,
M.
, 1993, “
Design of Deployable-Truss Masts for Space Station
,”
Aerospace Design Conference
,
Irvine, CA
.
23.
Shaker
,
J. F.
, and
Acquaviva
,
T. H.
, 1993, “Static Stability of the Space Station Solar Array FASTMast Structure,” Technical Report NASA, p.
106895
.
24.
Jin
,
Y.
,
Liu
,
T.
,
Lyu
,
R.
,
Ji
,
B.
, and
Cui
,
Q.
,
2014
, “
Theoretical Analysis and Experimental Investigation on Buckling of FASTMast Deployable Structures
,”
Int. J. Struct. Stab. Dyn.
,
15
(
5
), p.
1450075
.
25.
Gross
,
D.
, and
Messner
,
D.
, 1999, “
The Able Deployable Articulated Mast—Enabling Technology for the Shuttle Radar Topography Mission
,”
Proceedings of the 33rd Aerospace Mechanisms Symposium
,
Pasadena, CA
,
May 19–21
, pp.
15
30
.
26.
Xue
,
N.-P.
,
Ding
,
F.
,
Li
,
B.
,
Wu
,
Q.
, and
Xie
,
D.-J.
, 2018, “
The Influence Parameters of 60 m Able Deployable Articulated Mast Mode
,”
Proceedings of the International Symposium on Big Data and Artificial Intelligence
,
Hong Kong
,
Dec. 29–30
, pp.
299
305
.
27.
Wujun
,
C.
,
Yaozhi
,
L.
,
Gongyi
,
F.
,
Jinghai
,
G.
, and
Shilin
,
D.
,
2001
, “
Design Conception and Deployment Simulation for a Highly Synchronized Extendable/Retractable Space Mast
,”
Int. J. Space Struct.
,
16
(
4
), pp.
261
269
.
28.
Shan
,
M.
,
Guo
,
H.
,
Liu
,
R.
, and
Wang
,
Y.
, 2013, “
Design and Analysis of a Triangular Prism Modular Deployable Mast
,”
Proceedings of the 2013 IEEE International Conference on Mechatronics and Automation
,
Takamatsu, Japan
,
IEEE
, pp.
1546
1551
.
29.
Liu
,
M.
,
Shi
,
C.
,
Guo
,
H.
,
Ma
,
X.
,
Liu
,
R.
, and
Hu
,
F.
,
2022
, “
Innovative Design and Optimization of the Modular High Deployment Ratio Two-Dimensional Planar Antenna Mechanism
,”
Mech. Mach. Theory
,
174
, p.
104928
.
30.
Bo
,
C.
,
Jiang
,
Z.
,
Xinlu
,
W.
,
Luyao
,
G.
,
Xin
,
Z.
,
Yundou
,
X.
,
Junjie
,
Q.
, and
Yongsheng
,
Z.
,
2023
, “
Innovative Design and Optimization of a Two-Dimensional Deployable Nine-Grid Planar Antenna Mechanism With a Flat Reflection Surface
,”
Chin. J. Aeronaut.
,
36
(
11
), pp.
529
550
.
31.
Shi
,
C.
,
Guo
,
H.
,
Zhang
,
S.
,
Liu
,
R.
, and
Deng
,
Z.
,
2021
, “
Configuration Synthesis of Linear Foldable Over-Constrained Deployable Unit Based on Screw Theory
,”
Mech. Mach. Theory
,
156
, p.
104163
.
32.
Huang
,
Z.
,
Li
,
Q.
, and
Ding
,
H.
,
2013
,
Theory of Parallel Mechanisms
,
Springer
,
Dordrecht
.
You do not currently have access to this content.