Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Soft actuators, composed of pliable materials, are increasingly adopted in industrial grippers owing to their inherent flexibility, elasticity, and safety attributes, making them well-suited for anthropomorphic robotic applications. A significant gap in existing literature is the detailed exploration of hand abduction movements. Addressing this gap, the present study makes three principal contributions. First, it introduces the abduction soft-actuator (ASA), an innovative design tailored specifically for robotic hand abduction. Second, it establishes an analytical framework using the large deformation virtual beam (LDVB) theory for soft elastica, which enables a detailed analysis of the intrinsic physical properties of the actuator's internal membrane. Third, this study highlights the ASA's versatility, showcasing its ability to integrate membranes and springs seamlessly, thereby broadening its utility across diverse design paradigms. Empirical results underscore the ASA's capability to predict operational angles with varying spring stiffnesses, enhancing the precision of spring selection for a range of applications. This ASA exhibits an abduction angle ranging from 14.17 deg to 27.78 deg as the spring stiffness K varies from 200 N/m to 1600 N/m, with a root mean square error associated with these measurements ranging from 0.3321 deg to 1.2651 deg. Unlike traditional soft actuators that typically utilize a single material, the ASA demonstrates modularity, facilitating easy adjustments of springs to meet varied requirements. Contrasting with the typical case-by-case analytical approaches, the ASA significantly extends its applicability. Validation experiments using inflated silicone membranes corroborate the LDVB theoretical framework, suggesting that these empirically based estimations are conducive to analytical prediction. Collectively, this methodological advancement not only bridges the current technological divide but also enhances the understanding of soft actuator mechanics across a wide range of applications.

References

1.
Jin
,
X.
,
Feng
,
C.
,
Ponnamma
,
D.
,
Yi
,
Z.
,
Parameswaranpillai
,
J.
,
Thomas
,
S.
, and
Salim
,
N. V.
,
2020
, “
Review on Exploration of Graphene in the Design and Engineering of Smart Sensors, Actuators and Soft Robotics
,”
Chem. Eng. J. Adv.
,
4
, p.
100034
.
2.
She
,
Y.
,
Li
,
C.
,
Cleary
,
J.
, and
Su
,
H.-J.
,
2015
, “
Design and Fabrication of a Soft Robotic Hand With Embedded Actuators and Sensors
,”
ASME J. Mech. Rob.
,
7
(
2
), p.
021007
.
3.
Jeong
,
J.
,
Mitra
,
A.
, and
Lee
,
J. B. J.
,
2022
, “
Atomized Liquid Metal Droplet-Enabled Enhancement of Sensing Range and Stability for Ultrasensitive Crack-Based Sensor
,”
2022 IEEE Sensors
,
Dallas, TX
,
Oct. 30–Nov. 2
, IEEE, pp.
1
4
.
4.
Rich
,
S. I.
,
Wood
,
R. J.
, and
Majidi
,
C.
,
2018
, “
Untethered Soft Robotics
,”
Nat. Electron.
,
1
(
2
), pp.
102
112
.
5.
Hu
,
X.
,
Yang
,
F.
,
Wu
,
M.
,
Sui
,
Y.
,
Guo
,
D.
,
Li
,
M.
,
Kang
,
Z.
,
Sun
,
J.
, and
Liu
,
J.
,
2022
, “
A Super-Stretchable and Highly Sensitive Carbon Nanotube Capacitive Strain Sensor for Wearable Applications and Soft Robotics
,”
Adv. Mater. Technol.
,
7
(
3
), p.
2100769
.
6.
Jia
,
B.
,
Li
,
Z.
,
Zheng
,
T.
,
Wang
,
J.
,
Zhao
,
Z.-J.
,
Zhao
,
L.
,
Wang
,
B.
, et al
,
2024
, “
Highly-Sensitive, Broad-Range, and Highly-Dynamic MXene Pressure Sensors With Multi-level Nano-Microstructures for Healthcare and Soft Robots Applications
,”
Chem. Eng. J.
,
485
, p.
149750
.
7.
Zhou
,
X.
,
Majidi
,
C.
, and
O’Reilly
,
O. M.
,
2015
, “
Soft Hands: An Analysis of Some Gripping Mechanisms in Soft Robot Design
,”
Int. J. Solids Struct.
,
64–65
, pp.
155
165
.
8.
El-Atab
,
N.
,
Mishra
,
R. B.
,
Al-Modaf
,
F.
,
Joharji
,
L.
,
Alsharif
,
A. A.
,
Alamoudi
,
H.
,
Diaz
,
M.
,
Qaiser
,
N.
, and
Hussain
,
M. M.
,
2020
, “
Soft Actuators for Soft Robotic Applications: A Review
,”
Adv. Intell. Syst.
,
2
(
10
), p.
2000128
.
9.
Chiba
,
S.
,
Stanford
,
S.
,
Pelrine
,
R.
,
Kornbluh
,
R.
, and
Prahlad
,
H.
,
2006
, “
Electroactive Polymer Artificial Muscle
,”
J. Rob. Soc. Jpn.
,
24
(
4
), pp.
466
470
.
10.
Banerjee
,
H.
,
Pusalkar
,
N.
, and
Ren
,
H.
,
2018
, “
Single-Motor Controlled Tendon-Driven Peristaltic Soft Origami Robot
,”
ASME J. Mech. Rob.
,
10
(
6
), p.
064501
.
11.
Roche
,
E. T.
,
Horvath
,
M. A.
,
Wamala
,
I.
,
Alazmani
,
A.
,
Song
,
S.-E.
,
Whyte
,
W.
,
Machaidze
,
Z.
, et al
,
2017
, “
Soft Robotic Sleeve Supports Heart Function
,”
Sci. Transl. Med.
,
9
(
373
), p.
eaaf3925
.
12.
Chen
,
F. J.
,
Dirven
,
S.
,
Xu
,
W. L.
, and
Li
,
X. N.
,
2014
, “
Soft Actuator Mimicking Human Esophageal Peristalsis for a Swallowing Robot
,”
IEEE/ASME Trans. Mechatron.
,
19
(
4
), pp.
1300
1308
.
13.
Mosadegh
,
B.
,
Polygerinos
,
P.
,
Keplinger
,
C.
,
Wennstedt
,
S.
,
Shepherd
,
R. F.
,
Gupta
,
U.
,
Shim
,
J.
,
Bertoldi
,
K.
,
Walsh
,
C. J.
, and
Whitesides
,
G. M.
,
2014
, “
Pneumatic Networks for Soft Robotics That Actuate Rapidly
,”
Adv. Funct. Mater.
,
24
(
15
), pp.
2163
2170
.
14.
Wang
,
T.
,
Ge
,
L.
, and
Gu
,
G.
,
2018
, “
Programmable Design of Soft Pneu-Net Actuators With Oblique Chambers Can Generate Coupled Bending and Twisting Motions
,”
Sens. Actuat. A
,
271
, pp.
131
138
.
15.
Polygerinos
,
P.
,
Lyne
,
S.
,
Wang
,
Z.
,
Nicolini
,
L. F.
,
Mosadegh
,
B.
,
Whitesides
,
G. M.
, and
Walsh
,
C. J.
,
2013
, “
Towards a Soft Pneumatic Glove for Hand Rehabilitation
,”
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Tokyo, Japan
,
Nov. 3–7
, IEEE, pp.
1512
1517
.
16.
Natarajan
,
E.
,
Chia
,
K. Y.
,
Faudzi
,
A. A. M.
,
Lim
,
W. H.
,
Ang
,
C. K.
, and
Jafaari
,
A.
,
2021
, “
Bio Inspired Salamander Robot With Pneu-Net Soft Actuators–Design and Walking Gait Analysis
,”
Bull. Polish Acad. Sci.: Tech. Sci.
,
69
(
3
), p.
e137055
.
17.
Venter
,
D.
, and
Dirven
,
S.
,
2017
, “
Self Morphing Soft-Robotic Gripper for Handling and Manipulation of Delicate Produce in Horticultural Applications
,”
2017 24th International Conference on Mechatronics and Machine Vision in Practice (M2VIP)
,
Auckland, New Zealand
,
Nov. 21–23
, IEEE, pp.
1
6
.
18.
Wang
,
Z.
, and
Hirai
,
S.
,
2017
, “
Soft Gripper Dynamics Using a Line-Segment Model With an Optimization-Based Parameter Identification Method
,”
IEEE Rob. Autom. Lett.
,
2
(
2
), pp.
624
631
.
19.
Wang
,
Z.
,
Torigoe
,
Y.
, and
Hirai
,
S.
,
2017
, “
A Prestressed Soft Gripper: Design, Modeling, Fabrication, and Tests for Food Handling
,”
IEEE Rob. Autom. Lett.
,
2
(
4
), pp.
1909
1916
.
20.
Cacucciolo
,
V.
,
Shintake
,
J.
, and
Shea
,
H.
,
2019
, “
Delicate Yet Strong: Characterizing the Electro-Adhesion Lifting Force With a Soft Gripper
,”
2019 2nd IEEE International Conference on Soft Robotics (RoboSoft)
,
Seoul, South Korea
,
Apr. 14–18
, IEEE, pp.
108
113
.
21.
Dilibal
,
S.
,
Sahin
,
H.
,
Danquah
,
J. O.
,
Emon
,
M. O. F.
, and
Choi
,
J.-W.
,
2021
, “
Additively Manufactured Custom Soft Gripper With Embedded Soft Force Sensors for an Industrial Robot
,”
Int. J. Precis. Eng. Manuf.
,
22
(
4
), pp.
709
718
.
22.
Dollar
,
A. M.
,
2014
, “Classifying Human Hand Use and the Activities of Daily Living,”
The Human Hand as an Inspiration for Robot Hand Development
,
Ravi
Balasubramanian
,
Veronica J.
Santos
, ed.,
Springer
,
New York
, pp.
201
216
.
23.
Deimel
,
R.
, and
Brock
,
O.
,
2016
, “
A Novel Type of Compliant and Underactuated Robotic Hand for Dexterous Grasping
,”
Int. J. Rob. Res.
,
35
(
1–3
), pp.
161
185
.
24.
Li
,
C. S.
,
Gu
,
X. Y.
,
Xiao
,
X.
,
Zhu
,
G. N.
,
Prituja
,
A. V.
, and
Ren
,
H. L.
,
2019
, “
Transcend Anthropomorphic Robotic Grasping With Modular Antagonistic Mechanisms and Adhesive Soft Modulations
,”
IEEE Rob. Autom. Lett.
,
4
(
3
), pp.
2463
2470
.
25.
Feix
,
T.
,
Romero
,
J.
,
Schmiedmayer
,
H.-B.
,
Dollar
,
A. M.
, and
Kragic
,
D.
,
2015
, “
The Grasp Taxonomy of Human Grasp Types
,”
IEEE Trans. Human-Mach. Syst.
,
46
(
1
), pp.
66
77
.
26.
Puhlmann
,
S.
,
Harris
,
J.
, and
Brock
,
O.
,
2022
, “
RBO Hand 3: A Platform for Soft Dexterous Manipulation
,”
IEEE Trans. Rob.
,
38
(
6
), pp.
3434
3449
.
27.
Zhou
,
P.
,
Zhang
,
N.
, and
Gu
,
G.
,
2022
, “
A Biomimetic Soft-Rigid Hybrid Finger With Autonomous Lateral Stiffness Enhancement
,”
Adv. Intell. Syst.
,
4
(
12
), p.
2200170
.
28.
Zhou
,
J.
,
Chen
,
X.
,
Chang
,
U.
,
Lu
,
J.-T.
,
Leung
,
C. C. Y.
,
Chen
,
Y.
,
Hu
,
Y.
, and
Wang
,
Z.
,
2019
, “
A Soft-Robotic Approach to Anthropomorphic Robotic Hand Dexterity
,”
IEEE Access
,
7
, pp.
101483
101495
.
29.
Till
,
J.
,
Aloi
,
V.
, and
Rucker
,
C.
,
2019
, “
Real-Time Dynamics of Soft and Continuum Robots Based on Cosserat Rod Models
,”
Int. J. Rob. Res.
,
38
(
6
), pp.
723
746
.
30.
Alici
,
G.
,
Canty
,
T.
,
Mutlu
,
R.
,
Hu
,
W. P.
, and
Sencadas
,
V.
,
2018
, “
Modeling and Experimental Evaluation of Bending Behavior of Soft Pneumatic Actuators Made of Discrete Actuation Chambers
,”
Soft Rob.
,
5
(
1
), pp.
24
35
.
31.
Wang
,
Z.
, and
Hirai
,
S.
,
2022
, “
Analytical Modeling of a Soft Pneu-Net Actuator Subjected to Planar Tip Contact
,”
IEEE Trans. Rob.
,
38
(
5
), pp.
2720
2733
.
32.
Srivastava
,
A.
, and
Hui
,
C.-Y.
,
2013
, “
Large Deformation Contact Mechanics of Long Rectangular Membranes. I. Adhesionless Contact
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
469
(
2160
), p.
20130424
.
33.
Yeoh
,
O. H.
,
1993
, “
Some Forms of the Strain Energy Function for Rubber
,”
Rubber Chem. Technol.
,
66
(
5
), pp.
754
771
.
34.
Wang
,
J. B.
,
Fei
,
Y. Q.
, and
Pang
,
W.
,
2019
, “
Design, Modeling, and Testing of a Soft Pneumatic Glove With Segmented PneuNets Bending Actuators
,”
IEEE-ASME Trans. Mechatron.
,
24
(
3
), pp.
990
1001
.
35.
Szurgott
,
P.
, and
Jarzębski
,
Ł.
,
2019
, “
Selection of a Hyper-Elastic Material Model-A Case Study for a Polyurethane Component
,”
Latin Am. J. Solids Struct.
,
16
(
5
), p.
e191
.
36.
Timoshenko
,
S. P.
, and
Gere
,
J. M.
,
2009
,
Theory of Elastic Stability
,
Courier Corporation
,
Mineola, NY
.
You do not currently have access to this content.