Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This paper tackles the challenges encountered in surgical continuum robotics by introducing a dynamic model tailored for a cable-driven continuum robot. The intricacies of dynamic modeling and control frequently lead to suboptimal outcomes. Prior studies have often lacked comprehensive descriptions of individual robot component movements, thereby impeding control processes, especially in the presence of external disturbances. Although machine learning-based models show promise across different domains, they face hurdles in continuum robotics due to the complexity of the systems involved. Traditional mathematical models, in contrast, offer explicit equations, providing better interpretability, unlike machine learning models that may struggle with generalization, especially in highly nonlinear systems like continuum robots. The developed model adeptly captures the kinematic and dynamic constraints of various robot segments, serving as the foundation for a robust optimized control strategy. This strategy, which integrates computed torque control and particle swarm optimization, enables real-time computation of joint torques based on feedback, ensuring precise and stable task execution even amidst external perturbations. Comparative analysis with an optimized proportional-integral-derivative controller unequivocally demonstrates the superiority of the optimized computed torque controller in settling time, overshoot, and robustness against disturbances. This advancement represents a noteworthy contribution to robotics, with the potential to significantly enhance continuum robot performance in surgical and inspection applications, thereby fostering innovative advancements across various fields.

References

1.
Du
,
Z.
,
Wang
,
W.
,
Wang
,
W.
, and
Dong
,
W.
,
2017
, “
Preoperative Planning for a Multi-arm Robot-Assisted Minimally Invasive Surgery System
,”
Simulation
,
93
(
10
), pp.
853
867
.
2.
Trochimczuk
,
R.
,
Lukaszewicz
,
A.
,
Mikolajczyk
,
T.
,
Aggogeri
,
F.
, and
Borboni
,
A.
,
2019
, “
Finite Element Method Stiffness Analysis of a Novel Telemanipulator for Minimally Invasive Surgery
,”
Simulation
,
95
(
11
), pp.
1015
1025
.
3.
Webster III
,
R. J.
, and
Jones
,
B. A.
,
2010
, “
Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review
,”
Int. J. Rob. Res.
,
29
(
13
), pp.
1661
1683
.
4.
Runge
,
G.
,
Wiese
,
M.
,
Gunther
,
L.
, and
Raatz
,
A.
,
2017
, “
A Framework for the Kinematic Modeling of Soft Material Robots Combining Finite Element Analysis and Piecewise Constant Curvature Kinematics
,”
2017 3rd International Conference on Control, Automation and Robotics
,
Nagoya, Japan
,
Apr. 22–24
, pp.
7
14
.
5.
Della Santina
,
C.
,
Bicchi
,
A.
, and
Rus
,
D.
,
2020
, “
On an Improved State Parametrization for Soft Robots With Piecewise Constant Curvature and Its Use in Model Based Control
,”
IEEE Rob. Autom. Lett.
,
5
(
2
), pp.
1001
1008
.
6.
Walker
,
I. D.
,
2013
, Continuous Backbone Continuum Robot Manipulators, International Scholarly Research Notices.
7.
Mosqueda
,
S.
,
Moncada
,
Y.
,
Murrugarra
,
C.
, and
León-Rodriguez
,
H.
,
2018
, “
Constant Curvature Kinematic Model Analysis and Experimental Validation for Tendon Driven Continuum Manipulators
,”
ICINCO
(
2
), pp.
221
228
.
8.
Djeffal
,
S
, and
Mahfoudi
,
C.
,
2023
, Inverse Kinematic Model of Multisection Continuum Robots Using Particle Swarm Optimization and Comparison to Four Meta-Heuristic Approaches. Simulation.
9.
Mahl
,
T.
,
Hildebrandt
,
A.
, and
Sawodny
,
O.
,
2014
, “
A Variable Curvature Continuum Kinematics for Kinematic Control of the Bionic Handling Assistant
,”
IEEE Trans. Rob.
,
30
(
4
), pp.
935
949
.
10.
Djeffal
,
S.
,
Amouri
,
A.
, and
Mahfoudi
,
C.
,
2021
, “
Kinematics Modeling and Simulation Analysis of Variable Curvature Kinematics Continuum Robots
,”
UPBSci. Bull. Ser. D Mech. Eng.
,
83
(
1
), pp.
28
42
.
11.
Djeffal
,
S.
,
Mahfoudi
,
C.
, and
Amouri
,
A.
,
2021
, “
Comparison of Three Meta-Heuristic Algorithms for Solving Inverse Kinematics Problems of Variable Curvature Continuum Robots
,”
2021 IEEE European Conference on Mobile Robots (ECMR)
,
Bonn, Germany
,
Aug. 31–Sept. 3
, pp.
1
6
.
12.
Djeffal
,
S.
, and
Ghoul
,
A.
,
2023
, “
Experimental and Theoretical Verification of TLBO and PSO for Solving the Inverse Kinematic Model of Continuum Robots
,”
J. Eng. Res.
13.
Ghoul
,
A.
,
Kara
,
K.
,
Djeffal
,
S.
,
Benrabah
,
M.
, and
Hadjili
,
M. L.
,
2022
, “
Artificial Neural Network for Solving the Inverse Kinematic Model of a Spatial and Planar Variable Curvature Continuum Robot
,”
Arch. Mech. Eng.
,
69
(
4
), pp.
595
613
.
14.
Ghoul
,
A.
,
Kara
,
K.
,
Djeffal
,
S.
,
Benrabah
,
M.
, and
Hadjili
,
M. L.
,
2022
, “
Inverse Kinematic Model of Continuum Robots Using Artificial Neural Network
,”
2022 19th International Multi-Conference on Systems. Signals & Devices
,
Setif, Algeria
,
May 6–10
,
IEEE
, pp.
1893
1898
.
15.
Li
,
M.
,
Kang
,
R.
,
Branson
,
D. T.
, and
Dai
,
J. S.
,
2017
, “
Model-Free Control for Continuum Robots Based on an Adaptive Kalman Filter
,”
IEEE/ASME Trans. Mech.
,
23
(
1
), pp.
286
297
.
16.
Goharimanesh
,
M.
,
Mehrkish
,
A.
, and
Janabi-Sharifi
,
F.
,
2020
, “
A Fuzzy Reinforcement Learning Approach for Continuum Robot Control
,”
J. Intell. Rob. Syst.
,
100
(
3
), pp.
809
826
.
17.
Yekutieli
,
Y.
,
Sagiv-Zohar
,
R.
,
Aharonov
,
R.
,
Engel
,
Y.
,
Hochner
,
B.
, and
Flash
,
T.
,
2005
, “
Dynamic Model of the Octopus Arm. I. Biomechanics of the Octopus Reaching Movement
,”
J. Neurophys.
,
94
(
2
), pp.
1443
1458
.
18.
Trivedi
,
D.
,
Lotfi
,
A.
, and
Rahn
,
C. D.
,
2007
, “
Geometrically Exact Dynamic Models for Soft Robotic Manipulators
,”
2007 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Diego, CA
,
Oct. 29–Nov. 2
, pp.
1497
1502
.
19.
Liu
,
W.
, and
Rahn
,
C. R.
,
2003
, “
Fiber-Reinforced Membrane Models of McKibben Actuators
,”
ASME J. Appl. Mech.
,
70
(
6
), pp.
853
859
.
20.
Alqumsan
,
A. A.
,
Khoo
,
S.
, and
Norton
,
M.
,
2019
, “
Robust Control of Continuum Robots Using Cosserat Rod Theory
,”
Mech. Mach. Theory
,
131
, pp.
48
61
.
21.
Amouri
,
A.
,
Mahfoudi
,
C.
, and
Zaatri
,
A.
,
2019
, “
Dynamic Modeling of a Spatial Cable-Driven Continuum Robot Using Euler-Lagrange Method
,”
Int. J. Eng. Technol. Innov.
,
10
(
1
), p.
60
.
22.
Amouri
,
A.
,
Zaatri
,
A.
, and
Mahfoudi
,
C.
,
2018
, “
Dynamic Modeling of a Class of Continuum Manipulators in Fixed Orientation
,”
J. Intell. Rob. Syst.
,
91
(
3
), pp.
413
424
.
23.
Ghoul
,
A.
,
Djeffal
,
S.
,
Kara
,
K.
, and
Aouaichia
,
A.
,
2023
, “
Dynamic Modeling and Control of Continuum Robots Using an Optimized PID Control
,”
2023 International Conference on Advances in Electronics, Control and Communication Systems (ICAECCS) IEEE 2023
,
Blida, Algeria
,
Mar. 6–7
, pp.
1
6
.
24.
Mochiyama
,
H.
, and
Suzuki
,
T.
,
2002
,
Dynamical Modelling of a Hyperflexible Manipulator
.
Proceedings of the 41st SICE Annual Conference
. Vol.
3
, pp.
1505
1510
.
25.
Yang
,
J.
,
Peng
,
H.
,
Zhou
,
W.
,
Zhang
,
J.
, and
Wu
,
Z.
,
2021
, “
A Modular Approach for Dynamic Modeling of Multisegment Continuum Robots
,”
Mech. Mach. Theory
,
165
, p.
104429
.
26.
Ghoul
,
A.
,
Kara
,
K.
,
Benrabah
,
M.
, and
Hadjili
,
M. L.
,
2022
Optimized Nonlinear Sliding Mode Control of a Continuum Robot Manipulator
,
J. Contr. Autom. Elect. Syst.
, pp.
1
9
.
27.
Ghoul
,
A.
,
Kara
,
K.
,
Benrabah
,
M.
, and
Nasri
,
B.
,
2021
, Control of Continuum Robot Using Two Optimized PID Controllers, Multi Conference on Electrical Engineering.
28.
Gao
,
X.
,
Li
,
X.
,
Sun
,
Y.
,
Hao
,
L.
,
Yang
,
H.
, and
Xiang
,
C.
,
2020
, Model-Free Tracking Control of Continuum Manipulators With Global Stability and Assigned Accuracy. IEEE Trans. Syst. Man Cybernet. Syst.
29.
Ba
,
W.
,
Dong
,
X.
,
Mohammad
,
A.
,
Wang
,
M.
,
Axinte
,
D.
, and
Norton
,
A.
,
2021
, Design and Validation of a Novel Fuzzy-Logic-Based Static Feedback Controller for Tendon-Driven Continuum Robots. IEEE/ASME Trans. Mechatron.
30.
Li
,
M.
,
Kang
,
R.
,
Geng
,
S.
, and
Guglielmino
,
E.
,
2018
, “
Design and Control of a Tendon-Driven Continuum Robot
,”
Trans. Inst. Measure. Control
,
40
(
11
), pp.
3263
3272
.
31.
Wang
,
Z.
,
Wang
,
T.
,
Zhao
,
B.
,
He
,
Y.
,
Zhang
,
P.
,
Hu
,
Y.
,
Li
,
B.
, and
Meng
,
M. Q. H.
,
2021
, “
Hybrid Adaptive Control Strategy for Continuum Surgical Robot Under External Load
,”
IEEE Rob. Auto. Lett.
,
6
(
2
), pp.
1407
1414
.
32.
Alqumsan
,
A. A.
,
Khoo
,
S.
, and
Norton
,
M.
,
2019
, “
Multi-Surface Sliding Mode Control of Continuum Robots With Mismatched Uncertainties
,”
Meccanica
,
54
(
14
), pp.
2307
2316
.
33.
Ebrahimi
,
M. M.
,
Piltan
,
F.
,
Bazregar
,
M.
, and
Nabaee
,
A.
,
2013
, “
Intelligent Robust Fuzzy-Parallel Optimization Control of a Continuum Robot Manipulator
,”
Int. J. Control Auto.
,
6
(
3
), pp.
15
34
.
34.
Jones
,
B. A.
, and
Walker
,
I. D.
,
2006
, “
Kinematics for Multisection Continuum Robots
,”
IEEE Trans. Rob.
,
22
(
1
), pp.
43
55
.
35.
Rone
,
W. S.
, and
Ben-Tzvi
,
P.
,
2013
, “
Continuum Robot Dynamics Utilizing the Principle of Virtual Power
,”
IEEE Trans. Rob.
,
30
(
1
), pp.
275
287
.
36.
Scibilia
,
A.
,
Pedrocchi
,
N.
, and
Fortuna
,
L.
,
2023
, “
Modeling Nonlinear Dynamics in Human–Machine Interaction
,”
IEEE Access
,
11
, pp.
58664
58678
.
37.
Shi
,
Y.
, and
Eberhart
,
R.
,
1998
, “
A Modified Particle Swarm Optimizer
,”
1998 IEEE International Conference on Evolutionary Computation Proceedings IEEE World Congress on Computational Intelligence
,
Anchorage, AK
,
May 4-9
,
IEEE
, pp.
69
73
.
You do not currently have access to this content.