Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The present study investigates the problem of towing an object that is lying on a surface in a given workspace and the applicability to a planetary rover with four steering wheels. A quasi-static method has been introduced and used for path planning and for the synthesis of both object and rover trajectories. The rover uses a tether as the towing medium, which is modeled as an elastic unilateral constraint. Moreover, a kinematic model of the rover that includes steering asymmetrical joint limits is taken into account. The dynamics model of the overall system is then derived, and a sensitivity analysis is performed over a finite number of different trajectories, in order to evaluate the quasi-static assumption, the effects of the model, and the influence of the elastic constraint. Finally, experiments have been performed using the novel Archimede rover prototype and compared with dynamics simulations; the remarkable adherence shown with the model validates the overall approach.

References

1.
Schuster
,
M. J.
,
Brand
,
C.
,
Brunner
,
S. G.
,
Lehner
,
P.
,
Reill
,
J.
,
Riedel
,
S.
, and
Bodenmüller
,
T.
,
2016
, “
The LRU Rover for Autonomous Planetary Exploration and Its Success in the Spacebotcamp Challenge
,”
2016 International Conference on Autonomous Robot Systems and Competitions (ICARSC)
,
Bragança, Portugal
,
May 4–6
, pp.
7
14
.
2.
Manz
,
M.
,
Sonsalla
,
R.
,
Hilljegerdes
,
J.
,
Oekermann
,
C.
,
Schwendner
,
J.
,
Bartsch
,
S.
, and
Ptacek
,
S.
,
2014
, “
Mechanical Design of a Rover for Mobile Manipulation in Uneven Terrain in the Context of the Spacebot Cup
,”
Proceedings of the International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS’14)
,
Montreal, Canada
,
June 17
.
3.
Tunstel
,
E.
,
Maimone
,
M.
,
Trebi-Ollennu
,
A.
,
Yen
,
J.
,
Petras
,
R.
, and
Willson
,
R.
,
2005
, “
Mars Exploration Rover Mobility and Robotic Arm Operational Performance
,”
2005 IEEE International Conference on Systems, Man and Cybernetics
,
Waikoloa, HI
,
Oct. 12
,
Vol. 2, pp. 1807–1814
.
4.
Moeller
,
R. C.
,
Jandura
,
L.
,
Rosette
,
K.
,
Robinson
,
M.
,
Samuels
,
J.
,
Silverman
,
M.
, and
Brown
,
K.
,
2020
, “
The Sampling and Caching Subsystem (SCS) for the Scientific Exploration of Jezero Crater by the Mars 2020 Perseverance Rover
,”
Space Sci. Rev.
,
217
(
5
), pp.
1
43
.
5.
Farley
,
K. A.
,
Williford
,
K. H.
,
Stack
,
K. M.
,
Bhartia
,
R.
,
Chen
,
A.
,
Hand
,
K.
,
Goreva
,
Y.
, et al.,
2020
, “
Mars 2020 Mission Overview
,”
Space Sci. Rev.
,
216
(
8
), p.
142
.
6.
Muralidharan
,
A.
, and
Mostofi
,
Y.
,
2019
, “
Path Planning for Minimizing the Expected Cost Until Success
,”
IEEE Trans. Rob.
,
35
(
2
), pp.
466
481
.
7.
Abad-Manterola
,
P.
,
Nesnas
,
I. A. D.
, and
Burdick
,
J.
,
2011
, “
Motion Planning on Steep Terrain for the Tethered Axel Rover
,”
2011 IEEE International Conference on Robotics and Automation
,
Shanghai, China
,
May 9–13
, pp.
4188
4195
.
8.
Yamashita
,
A.
,
Kawano
,
K.
,
Ota
,
J.
,
Arai
,
T.
,
Fukuchi
,
M.
,
Sasaki
,
J.
, and
Aiyama
,
Y.
,
1999
, “
Planning Method for Cooperative Manipulation by Multiple Mobile Robots Using Tools With Motion Errors
,”
IEEE International Conference on Intelligent Robots and Systems
,
Kyongju, South Korea
,
Oct. 17–21
, Vol. 2, pp.
978
983
.
9.
Donald
,
B.
,
Gariepy
,
L.
, and
Rus
,
D.
,
1999
, “
Experiments in Constrained Prehensile Manipulation: Distributed Manipulation With Ropes
,”
Lecture Notes in Control and Information Sciences
, Vol.
10
, Springer, London.
10.
Donald
,
B.
,
Gariepy
,
L.
, and
Rus
,
D.
,
2000
, “
Distributed Manipulation of Multiple Objects Using Ropes
,”
Proceedings 2000 ICRA, Millennium Conference,. IEEE International Conference on Robotics and Automation, Symposia Proceedings, Cat. No.00CH37065
,
San Francisco, CA
,
Apr. 24–28
, Vol. 101, pp.
450
457
.
11.
Maneewarn
,
T.
, and
Detudom
,
P.
,
2005
, “
Mechanics of Cooperative Nonprehensile Pulling by Multiple Robots
,”
2005 IEEE/RSJ International Conference on Intelligent Robots and Systems
, Edmonton, Alberta, Canada,
Aug. 2–6
, pp.
2004
2009
.
12.
Soares
,
R.
,
Bicho
,
E.
,
Machado
,
T.
, and
Erlhagen
,
W.
,
2007
, “
Object Transportation by Multiple Mobile Robots Controlled by Attractor Dynamics: Theory and Implementation
,”
2007 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Diego, CA
,
Oct. 29–Nov. 2
, pp.
937
944
..
13.
Sasaki
,
J.
,
Ota
,
J.
,
Yoshida
,
E.
,
Kurabayashi
,
D.
, and
Arai
,
T.
,
1995
, “
Cooperating Grasping of a Large Object by Multiple Mobile Robots
,”
Proceedings of 1995 IEEE International Conference on Robotics and Automation
,
Nagoya, Japan
,
May 21–27
, Vol. 1, pp.
1205
1210
.
14.
Yufka
,
A.
,
Parlaktuna
,
O.
, and
Ozkan
,
M.
,
2010
, “
Formation-Based Cooperative Transportation by a Group of Non-holonomic Mobile Robots
,”
2010 IEEE International Conference on Systems, Man and Cybernetics
,
Istanbul, Turkey
,
Oct. 10–13
, pp.
3300
3307
.
15.
Hichri
,
B.
,
Adouane
,
L.
,
Fauroux
,
J.-C.
,
Mezouar
,
Y.
, and
Doroftei
,
Y.
,
2014
, “
Cooperative Lifting and Transport by a Group of Mobile Robots
,”
Distributed Autonomous Robotic Systems 2014 – DARS
,
Daejeon, France
,
Nov. 2014
.
16.
Bertoncelli
,
F.
,
Ruggiero
,
F.
, and
Sabattini
,
L.
,
2020
, “
Linear Time-Varying MPC for Nonprehensile Object Manipulation With a Nonholonomic Mobile Robot
,”
2020 IEEE International Conference on Robotics and Automation (ICRA)
,
Paris, France
,
May 31–Aug. 31
, pp.
11032
11038
.
17.
Krivic
,
S.
, and
Piater
,
J.
,
2019
, “
Pushing Corridors for Delivering Unknown Objects With a Mobile Robot
,”
Auto. Rob.
,
43
(
6
), pp.
1435
1452
.
18.
Kolhe
,
P.
,
Dantam
,
N.
, and
Stilman
,
M.
,
2010
, “
Dynamic Pushing Strategies for Dynamically Stable Mobile Manipulators
,”
2010 IEEE International Conference on Robotics and Automation
,
Anchorage, AK
,
May 3–7
, pp.
3745
3750
.
19.
Bertoncelli
,
F.
,
Ruggiero
,
F.
, and
Sabattini
,
L.
,
2021
, “
Characterization of Grasp Configurations for Multi-robot Object Pushing
,”
2021 International Symposium on Multi-Robot and Multi-Agent Systems (MRS)
,
Cambridge, UK
,
Nov. 4–5
, pp.
38
46
.
20.
Mas
,
I.
, and
Kitts
,
C.
,
2012
, “
Object Manipulation Using Cooperative Mobile Multi-robot Systems
,”
Proceedings of the World Congress on Engineering and Computer Science
,
San Francisco, CA
,
Oct. 24–26
, Vol. 1324–1329.
21.
Ohashi
,
F.
,
Kaminishi
,
K.
,
Figueroa
,
J.
,
Kato
,
H.
, and
Ota
,
J.
,
2014
, “
Transportation of a Large Object by Small Mobile Robots With Handcarts and Outrigger
,”
2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014)
,
Bali, Indonesia
,
Dec. 5–10
, pp.
70
75
.
22.
Ohashi
,
F.
,
Kaminishi
,
K.
,
Figueroa Heredia
,
J. D.
,
Kato
,
H.
,
Ogata
,
T.
,
Hara
,
T.
, and
Ota
,
J.
,
2016
, “
Realization of Heavy Object Transportation by Mobile Robots Using Handcarts and Outrigger
,”
ROBOMECH J.
,
3
(
1
), p.
27
.
23.
Iglesias-Baniela
,
S.
,
Vinagre-Ríos
,
J.
, and
Pérez-Canosa
,
J. M.
,
2021
, “
Ship Handling in Unprotected Waters: A Review of New Technologies in Escort Tugs to Improve Safety
,”
Appl. Mech.
,
2
(
1
), pp.
46
62
.
24.
Wu
,
G.
,
Zhao
,
X.
,
Sun
,
Y.
, and
Wang
,
L.
,
2021
, “
Cooperative Maneuvering Mathematical Modeling for Multi-tugs Towing a Ship in the Port Environment
,”
J. Marine Sci. Eng.
,
9
(
4
), p.
384
. doi.org/10.3390/jmse9040384
25.
Chen
,
X.
,
Hong
,
B.
,
Lin
,
Z.
,
Hou
,
J.
,
Gao
,
Z.
, and
Lv
,
S.
,
2021
, “
Lumped Mass Model for Flexible Cable: A Review
,”
Journal of Physics: Conference Series, 2021 3rd International Conference on Computer Modeling, Simulation and Algorithm (CMSA2021), Vol. 1995
,
Shanghai, China
,
July 4–5
.
26.
Park
,
J.
, and
Kim
,
N.
,
2015
, “
Dynamics Modeling of a Semi-submersible Autonomous Underwater Vehicle With a Towfish Towed by a Cable
,”
Int. J. Naval Arch. Ocean Eng.
,
7
(
2
), pp.
409
425
.
27.
Fink
,
J.
,
Michael
,
N.
,
Kim
,
S.
, and
Kumar
,
V.
,
2011
, “Planning and Control for Cooperative Manipulation and Transportation With Aerial Robots,”
Robotics Research
,
C.
Pradalier
,
R.
Siegwart
, and
G.
Hirzinger
, eds.,
Springer
,
Berlin Heidelberg
, pp.
643
659
.
28.
Lee
,
T.
,
Sreenath
,
K.
, and
Kumar
,
V.
,
2013
, “
Geometric Control of Cooperating Multiple Quadrotor Uavs With a Suspended Payload
,”
Proceedings of the IEEE Conference on Decision and Control
,
Firenze, Italy
,
Dec. 10–13
.
29.
Li
,
Z.
,
Erskine
,
J.
,
Caro
,
S.
, and
Chriette
,
A.
,
2020
, “
Design and Control of a Variable Aerial Cable Towed System
,”
IEEE Rob. Auto. Lett.
,
5
(
2
), pp.
636
643
.
30.
Michael
,
N.
,
Fink
,
J.
, and
Kumar
,
V.
,
2011
, “
Cooperative Manipulation and Transportation With Aerial Robots
,”
Auto. Rob.
,
30
(
1
), pp.
73
86
.
31.
Jiang
,
Q.
, and
Kumar
,
V.
,
2010
, “The Inverse Kinematics of 3-d Towing,”
Advances in Robot Kinematics: Motion in Man and Machine
,
J.
Lenarcic
and
M. M.
Stanisic
, eds.,
Springer
,
Netherlands
, pp.
321
328
.
32.
Ma
,
D.
,
Wang
,
S.
,
Yang
,
M.
, and
Dong
,
Y.
,
2016
, “
Dynamic Simulation of Aerial Towed Decoy System Based on Tension Recurrence Algorithm
,”
Chinese J. Aeronaut.
,
29
(
6
), pp.
1484
1495
.
33.
Abad-Manterola
,
P.
,
Edlund
,
J.
,
Burdick
,
J.
,
Wu
,
A.
,
Oliver
,
T.
,
Nesnas
,
I. A.
, and
Cecava
,
J.
,
2009
, “
Axel
,”
IEEE Rob. Auto. Magaz.
,
16
(
4
), pp.
44
52
.
34.
Paulsen
,
G.
,
Farritor
,
S.
,
Huntsberger
,
T.
, and
Aghazarian
,
H.
,
2005
, “
All Terrain Exploration With the Cliff-bot System
,”
Proceedings of the 2005 IEEE International Conference on Robotics and Automation
,
Barcelona, Spain
,
Apr. 18–22
, pp.
721
726
.
35.
Cheng
,
P.
,
Fink
,
J.
,
Kumar
,
V.
, and
Pang
,
J.-S.
,
2008
, “
Cooperative Towing With Multiple Robots
,”
ASME J. Mech. Rob.
,
1
(
1
), p.
011008
.
36.
Kim
,
Y.-H.
, and
Shell
,
D. A.
,
2017
, “
Using a Compliant, Unactuated Tail to Manipulate Objects
,”
IEEE Rob. Auto. Lett.
,
2
(
1
), pp.
223
230
.
37.
Kim
,
Y.-H.
, and
Shell
,
D. A.
,
2018
, “
Bound to Help: Cooperative Manipulation of Objects Via Compliant, Unactuated Tails
,”
Auto. Rob.
,
42
(
8
), pp.
1563
1582
.
38.
Wilson
,
S.
,
Buffin
,
A.
,
Pratt
,
S. C.
, and
Berman
,
S.
,
2018
, “
Multi-robot Replication of Ant Collective Towing Behaviours
,”
R. Soc. Open Sci.
,
5
(
10
), p.
180409
.
39.
Le
,
L. Q.
,
Jallet
,
W.
,
Montaut
,
L.
,
Laptev
,
I.
,
Schmid
,
C.
, and
Carpentier
,
J.
,
2023
, “
Contact Models in Robotics: A Comparative Analysis
,”
ArXiv
. https://arxiv.org/abs/2304.06372
40.
Flores
,
P.
, and
Lankarani
,
H. M.
,
2012
, “
An Overviewon Continuous Contact Force Models for Multibody Dynamics
,”
ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Chicago, IL
,
Aug. 12–15
, pp.
31
37
.
41.
Tarokh
,
M.
, and
McDermott
,
G.
,
2005
, “
Kinematics Modeling and Analyses of Articulated Rovers
,”
IEEE Trans. Rob.
,
21
(
4
), pp.
539
553
.
42.
Lou
,
Q.
,
González
,
F.
, and
Kövecses
,
J.
,
2019
, “
Kinematic Modeling and State Estimation of Exploration Rovers
,”
IEEE Rob. Auto. Lett.
,
4
(
2
), pp.
1311
1318
.
43.
Ding
,
L.
,
Huang
,
L.
,
Li
,
S.
,
Gao
,
H.
,
Deng
,
H.
,
Li
,
Y.
, and
Liu
,
G.
,
2020
, “
Definition and Application of Variable Resistance Coefficient for Wheeled Mobile Robots on Deformable Terrain
,”
IEEE Trans. Rob.
,
36
(
3
), pp.
894
909
.
44.
Azimi
,
A.
,
Kövecses
,
J.
, and
Angeles
,
J.
,
2013
, “
Wheel–soil Interaction Model for Rover Simulation and Analysis Using Elastoplasticity Theory
,”
IEEE Trans. Rob.
,
29
(
5
), pp.
1271
1288
.
45.
Setterfield
,
T. P.
, and
Ellery
,
A.
,
2013
, “
Terrain Response Estimation Using an Instrumented Rocker-Bogie Mobility System
,”
IEEE Trans. Rob.
,
29
(
1
), pp.
172
188
.
46.
Ojeda
,
L.
,
Cruz
,
D.
,
Reina
,
G.
, and
Borenstein
,
J.
,
2006
, “
Current-based Slippage Detection and Odometry Correction for Mobile Robots and Planetary Rovers
,”
IEEE Trans. Rob.
,
22
(
2
), pp.
366
378
.
47.
Iagnemma
,
K.
,
Kang
,
S.
,
Shibly
,
H.
, and
Dubowsky
,
S.
,
2004
, “
Online Terrain Parameter Estimation for Wheeled Mobile Robots With Application to Planetary Rovers
,”
IEEE Trans. Rob.
,
20
(
5
), pp.
921
927
.
48.
Mason
,
M. T.
,
1986
, “
Mechanics and Planning of Manipulator Pushing Operations
,”
Inter. J. Rob. Res.
,
5
(
3
), pp.
53
71
.
49.
Goyal
,
S.
,
Ruina
,
A.
, and
Papadopoulos
,
J.
,
1989
, “
Limit Surface and Moment Function Descriptions of Planar Sliding
,”
Proceedings, 1989 International Conference on Robotics and Automation
,
Scottsdale, AZ
,
May 14–19
, Vol. 2, pp.
794
799
.
50.
Goyal
,
S.
,
Ruina
,
A.
, and
Papadopoulos
,
J.
,
1991
, “
Planar Sliding With Dry Friction Part 1. Limit Surface and Moment Function
,”
Wear
,
143
(
2
), pp.
307
330
.
51.
Howe
,
R. D.
, and
Cutkosky
,
M. R.
,
1996
, “
Practical Force-Motion Models for Sliding Manipulation
,”
Inter. J. Rob. Res.
,
15
(
6
), pp.
557
572
.
52.
Takagi
,
S.
, and
Okawa
,
Y.
,
1991
, “
Rule-Based Control of a Mobile Robot for the Push-a-Box Operation
,”
Proceedings IROS ’91:IEEE/RSJ International Workshop on Intelligent Robots and Systems ’91
,
Osaka, Japan
,
Nov. 3–5
, Vol. 3, pp.
1338
1343
.
53.
Lynch
,
K. M.
, and
Mason
,
M. T.
,
1996
, “
Stable Pushing: Mechanics, Controllability, and Planning
,”
Inter. J. Rob. Res.
,
15
(
6
), pp.
533
556
.
54.
Zarei Khabjani
,
A.
,
Karimpour
,
H.
, and
Keshmiri
,
M.
,
2021
, “
Robotic Box Pushing Under Indeterminate Anisotropic Friction Properties
,”
Inter. J. Dyn. Control
,
9
(
3
), pp.
872
884
.
55.
Ospina
,
D.
, and
Ramirez-Serrano
,
A.
,
2020
, “
Sensorless In-hand Manipulation by an Underactuated Robot Hand
,”
ASME J. Mech. Rob.
,
12
(
5
), p.
051009
. doi.org/10.1115/1.4046652
56.
Kumar
,
R.
,
Mukherjee
,
J.
, and
Mukherjee
,
S.
,
2021
, “
A Sliding-Mode Control Algorithm to Enhance In-hand Motion Capabilities
,”
ASME J. Mech. Rob.
,
13
(
3
), p.
031013
.
57.
Kao
,
I.
, and
Cutkosky
,
M. R.
,
1992
, “
Quasistatic Manipulation With Compliance and Sliding
,”
Inter. J. Rob. Res.
,
11
(
1
), pp.
20
40
.
58.
Xydas
,
N.
, and
Kao
,
I.
,
1998
, “
Modeling of Contact Mechanics With Experimental Results for Soft Fingers
,”
Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190)
,
Victoria, BC, Canada
,
Oct. 17
, Vol. 1, pp.
488
493
.
59.
Ardakani
,
M. M. G.
,
Bimbo
,
J.
, and
Prattichizzo
,
D.
,
2020
, “
Quasi-static Analysis of Planar Sliding Using Friction Patches
,”
Inter. J. Rob. Res.
,
39
(
14
), pp.
1775
1795
. doi.org/10.48550/arXiv.1904.06677
60.
Fakhari
,
A.
,
Keshmiri
,
M.
, and
Keshmiri
,
M.
,
2014
, “
Dynamic Modeling and Slippage Analysis in Object Manipulation by Soft Fingers
,”
ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
,
Montreal, Quebec, Canada
,
Nov. 2014
.
61.
Fakhari
,
A.
,
Keshmiri
,
M.
, and
Kao
,
I.
,
2016
, “
Development of Realistic Pressure Distribution and Friction Limit Surface for Soft-finger Contact Interface of Robotic Hands
,”
J. Intell. Rob. Syst.
,
82
(
1
), pp.
39
50
.
62.
Fakhari
,
A.
,
Kao
,
I.
, and
Keshmiri
,
M.
,
2019
, “
Modeling and Control of Planar Slippage in Object Manipulation Using Robotic Soft Fingers
,”
ROBOMECH J.
,
6
(
1
), p.
15
.
63.
Kim
,
R.
,
Balakirsky
,
S.
,
Ahlin
,
K.
,
Marcum
,
M.
, and
Mazumdar
,
A.
,
2021
, “
Enhancing Payload Capacity with Dual-arm Manipulation and Adaptable Mechanical Intelligence
,”
ASME J. Mech. Rob.
,
13
(
2
), p.
021012
. doi.org/10.1115/1.4049442
64.
Zhang
,
C.
,
Chen
,
G.
,
Li
,
Z.
,
Qiu
,
X.
, and
Guo
,
S.
,
2023
, “
Design and Control of a Foldable and Reconfigurable Multi-terrain Vehicle with Variable Wheelbase
,”
ASME J. Mech. Rob.
,
15
(
2
), p.
024501
. doi.org/10.1115/1.4054616
65.
Song
,
Z.
,
Luo
,
Z.
,
Wei
,
G.
, and
Shang
,
J.
,
2022
, “
A Portable Six-Wheeled Mobile Robot With Reconfigurable Body and Self-adaptable Obstacle-Climbing Mechanisms
,”
ASME J. Mech. Rob.
,
14
(
5
), p.
051010
. doi.org/10.1115/1.4053529
66.
Davydychev
,
I.
,
Karras
,
J.
, and
Carpenter
,
K.
,
2019
, “
Design of a Two-Wheeled Rover With Sprawl Ability and Metal Brush Traction
,”
ASME J. Mech. Rob.
,
11
(
3
), p.
035002
. doi.org/10.1115/1.4043051
67.
Benamar
,
F.
, and
Grand
,
C.
,
2013
, “
Quasi-Static Motion Simulation and Slip Prediction of Articulated Planetary Rovers Using a Kinematic Approach
,”
ASME J. Mech. Rob.
,
5
(
2
), p.
021002
. doi.org/10.1115/1.4023873
68.
Makkar
,
C.
,
Dixon
,
W. E.
,
Sawyer
,
W. G.
, and
Hu
,
G.
,
2005
, “
A New Continuously Differentiable Friction Model for Control Systems Design
,”
Proceedings, 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
,
Monterey, CA
,
July 24–28
, pp.
600
605
.
69.
Caruso
,
M.
,
Bregant
,
L.
,
Gallina
,
P.
, and
Seriani
,
S.
,
2022
, “
Design and Multi-body Dynamic Analysis of the Archimede Space Exploration Rover
,”
Acta Astronaut.
,
194
, pp.
229
241
.
70.
Shampine
,
L. F.
, and
Reichelt
,
M. W.
,
1997
, “
The Matlab Ode Suite
,”
SIAM J. Sci. Comput.
,
18
(
1
), pp.
1
22
.
71.
Seriani
,
S.
,
Gallina
,
P.
,
Scalera
,
L.
, and
Lughi
,
V.
,
2018
, “
Development of N-dof Preloaded Structures for Impact Mitigation in Cobots
,”
ASME J. Mech. Rob.
,
10
(
5
), p. 051009. doi.org/10.1115/1.4040632
72.
Lucas
,
B. D.
, and
Kanade
,
T.
,
1981
, “
Iterative Image Registration Technique With an Application to Stereo Vision
,”
Proceedings of the 7th International Joint Conference on Artificial Intelligence (IJCAI ’81)
,
Vancouver, British Columbia
,
Aug. 24–28
, pp.
674
679
.
You do not currently have access to this content.