Abstract

The rising prevalence of human–machine interaction in industrial processes has led to increased interest in soft fingers, thanks to their superior safety and mechanical compliance. Human fingers, known for their exceptional grasping properties, serve as a significant inspiration in soft finger research. This study introduces a tendon–pneumatic-driven (TPD) soft finger, inspired by the tendon–flesh organization of human fingers. The TPD finger comprises a tendon-driven (TD) module and a pneumatic-driven (PD) module. The integration of these modules allows the TPD finger to achieve outstanding load-bearing capacity and high dexterity, all while maintaining significant mechanical compliance. To evaluate the TPD finger's performance, we first analyzed the coupling effect between the TD and PD modules under various driving strategies. We then demonstrated the TPD finger's capability to grasp a pencil lead (0.1 g, 0.7 mm) without damaging its structure, utilizing the drive compensation between the PD and TD modules. Additionally, the TPD gripper was employed to handle objects with fragile surfaces of various shapes and sizes. The results indicate that different gripping modes, combined with the coupling effect of varied actuation strategies, allow the TPD gripper to execute multiple grasping modes (pinch-up, pick-up, hold-up, torsion) effectively. Overall, the TPD gripper exhibits commendable performance in terms of compliance, load capacity, and flexibility.

References

1.
Gu
,
G.
,
Zhang
,
N.
,
Xu
,
H.
,
Lin
,
S.
,
Yu
,
Y.
,
Chai
,
G.
,
Ge
,
L.
, et al
,
2021
, “
A Soft Neuroprosthetic Hand Providing Simultaneous Myoelectric Control and Tactile Feedback
,”
Nat. Biomed. Eng.
,
7
(
4
), pp.
589
598
.
2.
Bhat
,
A.
,
Jaipurkar
,
S. S.
,
Low
,
L. T.
, and
Yeow
,
R. C.-H.
,
2023
, “
Reconfigurable Soft Pneumatic Actuators Using Extensible Fabric-Based Skins
,”
Soft Rob.
,
10
(
5
), pp.
923
936
.
3.
Wang
,
Z.
,
Or
,
K.
, and
Hirai
,
S.
,
2020
, “
A Dual-Mode Soft Gripper for Food Packaging
,”
Robot. Auton. Syst.
,
125
, p.
103427
.
4.
Li
,
H.
,
Yao
,
J.
,
Wei
,
C.
,
Zhou
,
P.
,
Xu
,
Y.
, and
Zhao
,
Y.
,
2021
, “
An Untethered Soft Robotic Gripper With High Payload-to-Weight Ratio
,”
Mech. Mach. Theory
,
158
, p.
104226
.
5.
Chen
,
G.
,
Yang
,
X.
,
Zhang
,
X.
, and
Hu
,
H.
,
2021
, “
Water Hydraulic Soft Actuators for Underwater Autonomous Robotic Systems
,”
Appl. Ocean Res.
,
109
, p.
102551
.
6.
Ji
,
H.
,
Lan
,
Y.
,
Nie
,
S.
,
Huo
,
L.
,
Yin
,
F.
, and
Hong
,
R.
,
2023
, “
Development of an Anthropomorphic Soft Manipulator With Rigid-Flexible Coupling for Underwater Adaptive Grasping
,”
Soft Rob.
,
10
(
6
), pp.
1070
1082
.
7.
Qu
,
J.
,
Yu
,
Z.
,
Tang
,
W.
,
Xu
,
Y.
,
Mao
,
B.
, and
Zhou
,
K.
,
2024
, “
Advanced Technologies and Applications of Robotic Soft Grippers
,”
Adv. Mater. Technol.
,
9
(
11
), p.
2301004
.
8.
Song
,
Z.
,
Wang
,
Z.
,
Liu
,
B.
,
Song
,
Y.
, and
Zhang
,
X.
,
2025
, “
A Soft Gripper Based on PneuNets Structure With Stiffness-Variable-Enhanced Load Capacity for Object Grasping
,”
Sens. Actuators, A
,
383
, p.
116253
.
9.
Zhang
,
J.
,
Li
,
Y.
,
Kan
,
Z.
,
Yuan
,
Q.
,
Rajabi
,
H.
,
Wu
,
Z.
,
Peng
,
H.
, and
Wu
,
J.
,
2023
, “
A Preprogrammable Continuum Robot Inspired by Elephant Trunk for Dexterous Manipulation
,”
Soft Rob.
,
10
(
3
), pp.
636
646
.
10.
Zhu
,
J.
,
Chai
,
Z.
,
Yong
,
H.
,
Xu
,
Y.
,
Guo
,
C.
,
Ding
,
H.
, and
Wu
,
Z.
,
2023
, “
Bioinspired Multimodal Multipose Hybrid Fingers for Wide-Range Force, Compliant, and Stable Grasping
,”
Soft Rob.
,
10
(
1
), pp.
30
39
.
11.
Zhang
,
Y.
,
Zhang
,
W.
,
Yang
,
J.
, and
Pu
,
W.
,
2022
, “
Bioinspired Soft Robotic Fingers With Sequential Motion Based on Tendon-Driven Mechanisms
,”
Soft Rob.
,
9
(
3
), pp.
531
541
.
12.
Laschi
,
C.
,
Cianchetti
,
M.
,
Mazzolai
,
B.
,
Margheri
,
L.
,
Follador
,
M.
, and
Dario
,
P.
,
2012
, “
Soft Robot Arm Inspired by the Octopus
,”
Adv. Rob.
,
26
(
7
), pp.
709
727
.
13.
Xie
,
Z.
,
Domel
,
A. G.
,
An
,
N.
,
Green
,
C.
,
Gong
,
Z.
,
Wang
,
T.
,
Knubben
,
E. M.
,
Weaver
,
J. C.
,
Bertoldi
,
K.
, and
Wen
,
L.
,
2020
, “
Octopus Arm-Inspired Tapered Soft Actuators With Suckers for Improved Grasping
,”
Soft Rob.
,
7
(
5
), pp.
639
648
.
14.
Wang
,
T.
,
Joo
,
H.-J.
,
Song
,
S.
,
Hu
,
W.
,
Keplinger
,
C.
, and
Sitti
,
M.
, “
A Versatile Jellyfish-Like Robotic Platform for Effective Underwater Propulsion and Manipulation
,”
Sci. Adv.
,
9
(
15
), p.
eadg0292
.
15.
Sun
,
L.
,
Wan
,
J.
, and
Du
,
T.
,
2023
, “
Fully 3D-Printed Tortoise-Like Soft Mobile Robot With Muti-Scenario Adaptability
,”
Bioinspiration Biomimetics
,
18
(
6
), p.
066011
.
16.
Wu
,
M.
,
Xu
,
X.
,
Zhao
,
Q.
,
Afridi
,
W. H.
,
Hou
,
N.
,
Afridi
,
R. H.
,
Zheng
,
X.
,
Wang
,
C.
, and
Xie
,
G.
,
2022
, “
A Fully 3D-Printed Tortoise-Inspired Soft Robot With Terrains-Adaptive and Amphibious Landing Capabilities
,”
Adv. Mater. Technol.
,
7
(
12
), p.
2200536
.
17.
Autumn
,
K.
,
Liang
,
Y. A.
,
Hsieh
,
S. T.
,
Zesch
,
W.
,
Chan
,
W. P.
,
Kenny
,
T. W.
,
Fearing
,
R.
, and
Full
,
R. J.
,
2000
, “
Adhesive Force of a Single Gecko Foot-Hair
,”
Nature
,
405
(
6787
), pp.
681
685
.
18.
Glick
,
P.
,
Suresh
,
S. A.
,
Ruffatto
,
D.
,
Cutkosky
,
M.
,
Tolley
,
M. T.
, and
Parness
,
A.
,
2018
, “
A Soft Robotic Gripper With Gecko-Inspired Adhesive
,”
IEEE Robot. Autom. Lett.
,
3
(
2
), pp.
903
910
.
19.
Hoang
,
T. T.
,
Quek
,
J. J. S.
,
Thai
,
M. T.
,
Phan
,
P. T.
,
Lovell
,
N. H.
, and
Do
,
T. N.
,
2021
, “
Soft Robotic Fabric Gripper With Gecko Adhesion and Variable Stiffness
,”
Sens. Actuators, A
,
323
, p.
112673
.
20.
Xiao
,
W.
,
Liu
,
C.
,
Hu
,
D.
,
Yang
,
G.
, and
Han
,
X.
,
2022
, “
Soft Robotic Surface Enhances the Grasping Adaptability and Reliability of Pneumatic Grippers
,”
Int. J. Mech. Sci.
,
219
, p.
107094
.
21.
Sun
,
T.
,
Chen
,
Y.
,
Han
,
T.
,
Jiao
,
C.
,
Lian
,
B.
, and
Song
,
Y.
,
2020
, “
A Soft Gripper With Variable Stiffness Inspired by Pangolin Scales, Toothed Pneumatic Actuator and Autonomous Controller
,”
Rob. Comput. Integr. Manuf.
,
61
, p.
101848
.
22.
Young
,
R. W.
,
2003
, “
Evolution of the Human Hand: The Role of Throwing and Clubbing
,”
J. Anat.
,
202
(
1
), pp.
165
174
.
23.
Zhu
,
Y.
,
Wei
,
G.
,
Ren
,
L.
,
Luo
,
Z.
, and
Shang
,
J.
,
2023
, “
An Anthropomorphic Robotic Finger With Innate Human-Finger-Like Biomechanical Advantages Part I: Design, Ligamentous Joint, and Extensor Mechanism
,”
IEEE Trans. Rob.
,
39
(
1
), pp.
485
504
.
24.
Lee
,
C.-T.
, and
Chang
,
J.-Y.
,
2022
, “
Design of Hybrid Fully Actuated and Self-Adaptive Mechanism for Anthropomorphic Robotic Finger
,”
ASME J. Mech. Rob.
,
15
(
4
), p.
041004
.
25.
Zhen
,
R.
,
Jiang
,
L.
,
Li
,
H.
, and
Yang
,
B.
,
2023
, “
Modular Bioinspired Hand With Multijoint Rigid-Soft Finger Possessing Proprioception
,”
Soft Rob.
,
10
(
2
), pp.
380
394
.
26.
Cheng
,
P.
,
Ye
,
Y.
,
Yan
,
B.
,
Lu
,
Y.
, and
Wu
,
C.
,
2022
, “
Eccentric High-Force Soft Pneumatic Bending Actuator for Finger-Type Soft Grippers
,”
ASME J. Mech. Rob.
,
14
(
6
), p.
060908
.
27.
Zhu
,
M.
,
Xie
,
M.
,
Mori
,
Y.
,
Dai
,
J.
,
Kawamura
,
S.
, and
Yue
,
X.
,
2023
, “
A Variable Stiffness Soft Gripper Based on Rotational Layer Jamming
,”
Soft Rob.
,
11
(
1
), pp.
85
94
.
28.
Lotfiani
,
A.
,
Zhao
,
H.
,
Shao
,
Z.
, and
Yi
,
X.
,
2019
, “
Torsional Stiffness Improvement of a Soft Pneumatic Finger Using Embedded Skeleton
,”
ASME J. Mech. Rob.
,
12
(
1
), p.
011016
.
29.
Sun
,
Z.
,
Jiang
,
T.
,
Wang
,
Z.
,
Jiang
,
P.
,
Yang
,
Y.
,
Li
,
H.
,
Ma
,
T.
, and
Luo
,
J.
,
2023
, “
Soft Robotic Finger With Energy-Coupled Quadrastability
,”
Soft Rob.
,
11
(
1
), pp.
140
156
.
30.
Guo
,
X.-Y.
,
Li
,
W.-B.
,
Gao
,
Q.-H.
,
Yan
,
H.
,
Fei
,
Y.-Q.
, and
Zhang
,
W.-M.
,
2020
, “
Self-Locking Mechanism for Variable Stiffness Rigid–Soft Gripper
,”
Smart Mater. Struct.
,
29
(
3
), p.
035033
.
31.
Kim
,
Y.-J.
,
Yoon
,
J.
, and
Sim
,
Y.-W.
,
2019
, “
Fluid Lubricated Dexterous Finger Mechanism for Human-Like Impact Absorbing Capability
,”
IEEE Robot. Autom. Lett.
,
4
(
4
), pp.
3971
3978
.
32.
Bazira
,
P. J.
,
2022
, “
Surgical Anatomy of the Hand
,”
Surgery (Oxford)
,
40
(
3
), p.
155
162
.
33.
Oliver-Butler
,
K.
,
Till
,
J.
, and
Rucker
,
C.
,
2019
, “
Continuum Robot Stiffness Under External Loads and Prescribed Tendon Displacements
,”
IEEE Trans. Rob.
,
35
(
2
), pp.
403
419
.
34.
Wang
,
H.
,
Wang
,
C.
,
Chen
,
W.
,
Liang
,
X.
, and
Liu
,
Y.
,
2017
, “
Three-Dimensional Dynamics for Cable-Driven Soft Manipulator
,”
IEEE/ASME Trans. Mechatron.
,
22
(
1
), pp.
18
28
.
35.
Webster
,
R. J.
, and
Jones
,
B. A.
,
2010
, “
Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review
,”
Int. J. Rob. Res.
,
29
(
13
), pp.
1661
1683
.
36.
Chu
,
A. H.
,
Cheng
,
T.
,
Muralt
,
A.
, and
Onal
,
C. D.
,
2023
, “
A Passively Conforming Soft Robotic Gripper With Three-Dimensional Negative Bending Stiffness Fingers
,”
Soft Rob.
,
10
(
3
), pp.
556
567
.
37.
Antunes
,
R.
,
Lang
,
L.
,
de Aguiar
,
M. L.
,
Dutra
,
T. A.
, and
Gaspar
,
P. D.
, “
Design of Fin Ray Effect Soft Robotic Gripper for Improved Mechanical Performance and Adaptability: Numerical Simulations and Experimental Validation
,”
IEEE/ASME MESA
,
Genova, Italy
,
Sept. 2–4
, pp.
1
6
.
38.
Zhang
,
K.
,
Fan
,
Y.
,
Shen
,
S.
,
Yang
,
X.
, and
Li
,
T.
,
2023
, “
Tunable Folding Assembly Strategy for Soft Pneumatic Actuators
,”
Soft Rob.
,
10
(
6
), pp.
1099
1114
.
39.
Zhai
,
Y.
,
De Boer
,
A.
,
Yan
,
J.
,
Shih
,
B.
,
Faber
,
M.
,
Speros
,
J.
,
Gupta
,
R.
, and
Tolley
,
M. T.
,
2023
, “
Desktop Fabrication of Monolithic Soft Robotic Devices With Embedded Fluidic Control Circuits
,”
Sci. Rob.
,
8
(
79
), p.
eadg3792
.
40.
Sanchez
,
V.
,
Mahadevan
,
K.
,
Ohlson
,
G.
,
Graule
,
M. A.
,
Yuen
,
M. C.
,
Teeple
,
C. B.
,
Weaver
,
J. C.
,
McCann
,
J.
,
Bertoldi
,
K.
, and
Wood
,
R. J.
,
2023
, “
3D Knitting for Pneumatic Soft Robotics
,”
Adv. Funct. Mater.
,
33
(26), p.
2212541
.
41.
Zhang
,
Y.
,
Liao
,
J.
,
Chen
,
M.
,
Li
,
X.
, and
Jin
,
G.
,
2023
, “
A Multi-Module Soft Robotic Arm With Soft Actuator for Minimally Invasive Surgery
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
19
(
1
), p.
e2467
.
42.
Hu
,
Q.
,
Huang
,
H.
,
Dong
,
E.
, and
Sun
,
D.
,
2021
, “
A Bioinspired Composite Finger With Self-Locking Joints
,”
IEEE Rob. Autom. Lett.
,
6
(
2
), pp.
1391
1398
.
You do not currently have access to this content.