Abstract

Compliant grippers hold great promise in improving precision and safety in minimally invasive surgery (MIS), offering versatile solutions for tissue manipulation while minimizing trauma. A novel focus on a capsule-shaped compliant gripper introduces innovative design methodologies, including shape optimization and consideration of axillary lymph node dimensions. By integrating compliant beams internally and optimizing their shape, this gripper offers enhanced precision and adaptability in tissue manipulation, addressing specific challenges in delicate surgical interventions such as lymph node dissection in breast cancer surgery. An isogeometric approach for the analysis of geometrically nonlinear beam structures enables a seamless integration of exact geometry in computer-aided design (CAD) into the analysis framework. It incorporates frictionless beam contact conditions based on a regularized penalty law, which enables an efficient and accurate simulation of the compliant grippers. Optimization results demonstrate the efficacy of the methodology, producing a compliant beam configuration that applies a mean pressure of 204.93 Pa, with a maximized contact area facilitating form closure gripping. Experimental validation using a test bench confirms the consistency of the contact areas predicted by simulations, with force sensor measurements showing good agreement with simulation results in most cases. Minor discrepancies, particularly in higher-pressure regions, are attributed to sensor limitations but do not significantly impact the overall findings. Continued research and refinement of these methodologies are essential for furthering the field of compliant gripper design and its application in medical and surgical contexts.

References

1.
Al Ali
,
M.
,
Al Ali
,
M.
,
Sahib
,
A. Y.
, and
Abbas
,
R. S.
,
2018
, “
Design Micro Piezoelectric Actuated Gripper for Medical Applications
,”
6th IIAE International Conference on Industrial Application Engineering 2018 (ICIAE2018)
,
Okinawa, Japan
,
Mar. 27–31
, pp.
175
180
.
2.
Rateni
,
G.
,
Cianchetti
,
M.
,
Ciuti
,
G.
,
Menciassi
,
A.
, and
Laschi
,
C.
,
2015
, “
Design and Development of a Soft Robotic Gripper for Manipulation in Minimally Invasive Surgery: A Proof of Concept
,”
Meccanica
,
50
, pp.
2855
2863
.
3.
Power
,
M.
,
Seneci
,
C. A.
,
Thompson
,
A. J.
, and
Yang
,
G.-Z.
,
2017
, “
Modelling and Characterization of a Compliant Tethered Microgripper for Microsurgical Applications
,”
2017 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)
,
Montreal, QC, Canada
,
July 17–21
, IEEE, pp.
1
7
.
4.
Breger
,
J. C.
,
Yoon
,
C.
,
Xiao
,
R.
,
Kwag
,
H. R.
,
Wang
,
M. O.
,
Fisher
,
J. P.
,
Nguyen
,
T. D.
, and
Gracias
,
D. H.
,
2015
, “
Self-Folding Thermo-Magnetically Responsive Soft Microgrippers
,”
ACS Appl. Mater. Interfaces
,
7
(
5
), pp.
3398
3405
.
5.
Malachowski
,
K.
,
Breger
,
J.
,
Kwag
,
H. R.
,
Wang
,
M. O.
,
Fisher
,
J. P.
,
Selaru
,
F. M.
, and
Gracias
,
D. H.
,
2014
, “
Stimuli-Responsive Theragrippers for Chemomechanical Controlled Release
,”
Angew. Chem., Int. Ed.
,
53
(
31
), pp.
8045
8049
.
6.
Gafford
,
J.
,
Ding
,
Y.
,
Harris
,
A.
,
McKenna
,
T.
,
Polygerinos
,
P.
,
Holland
,
D.
,
Walsh
,
C.
, and
Moser
,
A.
,
2015
, “
Shape Deposition Manufacturing of a Soft, Atraumatic, and Deployable Surgical Grasper
,”
ASME J. Mech. Rob.
,
7
(
2
), p.
021006
.
7.
Guo
,
J.
,
Low
,
J. H.
,
Rajagopal Iyer
,
V.
,
Wong
,
P.
,
Ong
,
C. B.
,
Loh
,
W. L.
, and
Yeow
,
C. H.
,
2022
, “
A Preliminary Study on Grip-Induced Nerve Damage Caused by a Soft Pneumatic Elastomeric Gripper
,”
Polymers
,
14
(
20
), p.
4272
.
8.
El-Tamer
,
M. B.
,
Ward
,
B. M.
,
Schifftner
,
T.
,
Neumayer
,
L.
,
Khuri
,
S.
, and
Henderson
,
W.
,
2007
, “
Morbidity and Mortality Following Breast Cancer Surgery in Women: National Benchmarks for Standards of Care
,”
Ann. Surg.
,
245
(
5
), pp.
665
671
.
9.
Zakaria
,
S.
,
Degnim
,
A. C.
,
Kleer
,
C. G.
,
Diehl
,
K. A.
,
Cimmino
,
V. M.
,
Chang
,
A. E.
,
Newman
,
L. A.
, and
Sabel
,
M. S.
,
2007
, “
Sentinel Lymph Node Biopsy for Breast Cancer: How Many Nodes Are Enough?
J. Surg. Oncol.
,
96
(
7
), pp.
554
559
.
10.
Breastcancer.org
,
2022
, “Lymph Node Dissection: What to Expect,” https://www.breastcancer.org/treatment/surgery/lymph-node-removal/what-to-expect.
11.
Chen
,
C.-F.
,
Zhang
,
Y.-L.
,
Cai
,
Z.-L.
,
Sun
,
S.-M.
,
Lu
,
X.-F.
,
Lin
,
H.-Y.
,
Liang
,
W.-Q.
,
Yuan
,
M.-H.
, and
Zeng
,
D.
,
2019
, “
Predictive Value of Preoperative Multidetector-Row Computed Tomography for Axillary Lymph Nodes Metastasis in Patients With Breast Cancer
,”
Front. Oncol.
,
8
, p.
666
.
12.
Medium
,
2021
, “Unit 1, Hill Climber—Optimization,” https://towardsdatascience.com/unit-1-hill-climber-optimization-985d5b79bd5.
13.
Liu
,
J.
,
Pérez-Liébana
,
D.
, and
Lucas
,
S. M.
,
2017
, “
Bandit-Based Random Mutation Hill-Climbing
,”
2017 IEEE Congress on Evolutionary Computation (CEC)
,
Donostia, Spain
,
June 5–8
, IEEE, pp.
2145
2151
.
14.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
,
1986
, “
A Three-Dimensional Finite-Strain Rod Model. Part II: Computational Aspects
,”
Comput. Methods Appl. Mech. Eng.
,
58
(
1
), pp.
79
116
.
15.
Crisfield
,
M. A.
, and
Jelenić
,
G.
,
1999
, “
Objectivity of Strain Measures in the Geometrically Exact Three-Dimensional Beam Theory and Its Finite-Element Implementation
,”
Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci.
,
455
(
1983
), pp.
1125
1147
.
16.
Choi
,
M.-J.
,
Klinkel
,
S.
, and
Sauer
,
R. A.
,
2022
, “
An Isogeometric Finite Element Formulation for Frictionless Contact of Cosserat Rods With Unconstrained Directors
,”
Comput. Mech.
,
70
(
6
), pp.
1107
1144
.
17.
Simo
,
J. C.
,
1985
, “
A Finite Strain Beam Formulation. the Three-Dimensional Dynamic Problem. Part I
,”
Comput. Methods Appl. Mech. Eng.
,
49
(
1
), pp.
55
70
.
18.
Meier
,
C.
,
Popp
,
A.
, and
Wall
,
W. A.
,
2014
, “
An Objective 3D Large Deformation Finite Element Formulation for Geometrically Exact Curved Kirchhoff Rods
,”
Comput. Methods Appl. Mech. Eng.
,
278
, pp.
445
478
.
19.
Choi
,
M.-J.
, and
Cho
,
S.
,
2019
, “
Isogeometric Configuration Design Sensitivity Analysis of Geometrically Exact Shear-Deformable Beam Structures
,”
Comput. Methods Appl. Mech. Eng.
,
351
, pp.
153
183
.
20.
Piegl
,
L.
, and
Tiller
,
W.
,
2012
,
The NURBS Book
,
Springer Science & Business Media
,
Springer Berlin, Heidelberg
.
21.
Hughes
,
T. J.
,
Cottrell
,
J. A.
, and
Bazilevs
,
Y.
,
2005
, “
Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry and Mesh Refinement
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
39–41
), pp.
4135
4195
.
22.
Eliska
,
O.
, and
Eliskova
,
M.
,
1995
, “
Are Peripheral Lymphatics Damaged by High Pressure Manual Massage?
Lymphology
,
28
(
1
), pp.
21
30
.
23.
Chikly Health Institute
,
2025
, “Lymph Drainage Therapy Faqs,” https://chiklyinstitute.com/LDT/FAQ, Accessed May 5, 2025.
You do not currently have access to this content.