Abstract

This research presents a novel two-chain parallel structure with symmetrical features. This parallel structure with eight revolute joints owns infinite bifurcation points and it has a large translational workspace and orientational workspace. A family of equivalent eight-bar parallel manipulator variants is proposed, together with two families of parallel manipulators with reduced mobility. Both the direct and inverse kinematic problems are solved for two motion modes of the selected parallel architecture. The singularity-free reachable workspace and dexterity distribution are investigated. Its large deploy/fold ratio is calculated through a new generic formula and compared with other deployable modules owning planar/spatial motions. Two potential industrial applications are developed by virtue of their superior features.

References

1.
Yan
,
P.
,
Huang
,
H. L.
,
Li
,
B.
, and
Zhou
,
D. Y.
,
2022
, “
A 5-DOF Redundantly Actuated Parallel Mechanism for Large Tilting Five-Face Machining
,”
Mech. Mach. Theory
,
172
, p.
104785
.
2.
Yang
,
X. L.
,
Wu
,
H. T.
,
Li
,
Y.
,
Kang
,
S. Z.
,
Chen
,
B.
,
Lu
,
H. M.
,
Lee
,
C. K. M.
, and
Ji
,
P.
,
2020
, “
Dynamics and Isotropic Control of Parallel Mechanisms for Vibration Isolation
,”
IEEE/ASME Trans. Mechatron.
,
25
(
4
), pp.
2027
2034
.
3.
Chong
,
Z. H.
,
Xie
,
F. G.
,
Liu
,
X. J.
,
Wang
,
J. S.
, and
Niu
,
H. F.
,
2020
, “
Design of the Parallel Mechanism for a Hybrid Mobile Robot in Wind Turbine Blades Polishing
,”
Robot. Comput. Integr. Manuf.
,
61
, p.
101857
.
4.
Yuan
,
X.
,
Meng
,
Q. Z.
,
Xie
,
F. G.
,
Liu
,
X. J.
, and
Wang
,
J. S.
,
2022
, “
Position Error Modeling and Accuracy Evaluation of n-DoF Translational Parallel Manipulators That can be Transformed Into n Four-bar Mechanisms Based on Motion/Force Transmissibility
,”
Mech. Mach. Theory
,
176
, p.
105012
.
5.
Leveziel
,
M.
,
Laurent
,
G. J.
,
Haouas
,
W.
,
Gauthier
,
M.
, and
Dahmouche
,
R.
,
2022
, “
A 4-DoF Parallel Robot with a Built-in Gripper for Waste Sorting
,”
IEEE Robot. Autom. Lett.
,
7
(
4
), pp.
9834
9841
.
6.
Ren
,
B.
, and
Zhang
,
Z. Q.
,
2021
, “
Design of 4PUS-PPPS Redundant Parallel Mechanism Oriented to the Visual System of Flight Simulator
,”
Int. J. Intell. Rob. Appl.
,
5
(
4
), pp.
534
542
.
7.
Ma
,
N.
,
Dong
,
X.
, and
Axinte
,
D.
,
2020
, “
Modeling and Experimental Validation of a Compliant Underactuated Parallel Kinematic Manipulator
,”
IEEE/ASME Trans. Mechatron.
,
25
(
3
), pp.
1409
1421
.
8.
Yaşır
,
A.
,
Kiper
,
G.
, and
Dede
,
M. İ. C.
,
2020
, “
Kinematic Design of a Non-Parasitic 2R1T Parallel Mechanism with Remote Center of Motion to be Used in Minimally Invasive Surgery Applications
,”
Mech. Mach. Theory
,
153
, p.
104013
.
9.
Luo
,
X.
,
Xie
,
F. G.
,
Liu
,
X. J.
, and
Xie
,
Z. H.
,
2021
, “
Kinematic Calibration of a 5-Axis Parallel Machining Robot Based on Dimensionless Error Mapping Matrix
,”
Robot. Comput. Integr. Manuf.
,
70
, p.
102115
.
10.
Li
,
J. C.
,
Huang
,
Z. Y.
,
Hu
,
C. Z.
,
Zhang
,
Z. Q.
, and
Shi
,
C. Y.
,
2024
, “
Development of a 7-DoF Haptic Operator Interface Based on Redundantly Actuated Parallel Mechanism
,”
IEEE Trans. Med. Rob. Bionics
,
6
(
2
), pp.
475
486
.
11.
Wang
,
J. Y.
,
Kong
,
X. W.
, and
Yu
,
J. J.
,
2022
, “
Design of Deployable Mechanisms Based on Wren Parallel Mechanism Units
,”
ASME J. Mech. Des.
,
144
(
6
), p.
063302
.
12.
Jia
,
G. L.
,
Huang
,
H. L.
,
Wang
,
S.
, and
Li
,
B.
,
2021
, “
Type Synthesis of Plane-Symmetric Deployable Grasping Parallel Mechanisms Using Constraint Force Parallelogram law
,”
Mech. Mach. Theory
,
161
, p.
104330
.
13.
Gao
,
C. Q.
,
Kang
,
X.
,
Lei
,
H.
,
Xu
,
P.
, and
Li
,
B.
,
2023
, “
Design and Analysis of a Novel Large-Span Two-Fold Deployable Mechanism
,”
Mech. Mach. Theory
,
186
, p.
105352
.
14.
Shayya
,
S.
,
Krut
,
S.
,
Company
,
O.
,
Baradat
,
C.
, and
Pierrot
,
F.
, “
A Novel (3T-1R) Redundant Parallel Mechanism with Large Operational Workspace and Rotational Capability
,”
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (ICIRS)
,
Tokyo, Japan
,
Nov. 3–7
, pp.
436
443
.
15.
Chen
,
G. Z.
,
Lou
,
Y. J.
, and
Shen
,
Y.
, “
A Hybrid and Compact Spherical Mechanism of Large Workspace and Output Torque with Unlimited Torsion for Hand-Held Gimbal
,”
2017 IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Macau, Macao
,
Dec. 5–8
, pp.
1918
1923
.
16.
Li
,
C. R.
,
Wang
,
N. F.
,
Chen
,
K. J.
, and
Zhang
,
X. M.
,
2022
, “
Prescribed Flexible Orientation Workspace and Performance Comparison of Non-Redundant 3-DOF Planar Parallel Mechanisms
,”
Mech. Mach. Theory
,
168
, pp.
104602
.
17.
Stepanenko
,
O.
,
Bonev
,
I. A.
, and
Zlatanov
,
D.
,
2019
, “
A new 4-DOF Fully Parallel Robot with Decoupled Rotation for Five-Axis Micromachining Applications
,”
ASME J. Mech. Rob.
,
11
(
3
), pp.
031010
.
18.
Gosselin
,
C.
, and
Schreiber
,
L. T.
,
2016
, “
Kinematically Redundant Spatial Parallel Mechanisms for Singularity Avoidance and Large Orientational Workspace
,”
IEEE Trans. Rob.
,
32
(
2
), pp.
286
300
.
19.
Cuan-Urquizo
,
E.
, and
Rodriguez-Leal
,
E.
,
2013
, “
Kinematic Analysis of the 3-CUP Parallel Mechanism
,”
Robot. Comput. Integr. Manuf.
,
29
(
5
), pp.
382
395
.
20.
Gan
,
D. M.
,
Liao
,
Q. Z.
,
Dai
,
J. S.
, and
Wei
,
S. M.
,
2010
, “
Design and Kinematics Analysis of a New 3CCC Parallel Mechanism
,”
Robotica
,
28
(
7
), pp.
1065
1072
.
21.
Wang
,
Y. J.
,
Belzile
,
B.
,
Angeles
,
J.
, and
Li
,
Q. C.
,
2019
, “
Kinematic Analysis and Optimum Design of a Novel 2PUR-2RPU Parallel Robot
,”
Mech. Mach. Theory
,
139
, pp.
407
423
.
22.
Wang
,
J.
, and
Gosselin
,
C. M.
,
2004
, “
Kinematic Analysis and Design of Kinematically Redundant Parallel Mechanisms
,”
ASME J. Mech. Des.
,
126
(
1
), pp.
109
118
.
23.
Yu
,
W. D.
,
Wang
,
H.
, and
Chen
,
G. L.
,
2018
, “
Design and Kinematic Analysis of a 3-Translational-DOF Spatial Parallel Mechanism Based on Polyhedral
,”
Mech. Mach. Theory
,
121
, pp.
92
115
.
24.
Patel
,
S.
, and
Sobh
,
T.
,
2015
, “
Manipulator Performance Measures-a Comprehensive Literature Survey
,”
J. Intell. Rob. Syst.
,
77
(
3–4
), pp.
547
570
.
25.
Nigatu
,
H.
, and
Kim
,
D.
,
2023
, “
Workspace Optimization of 1T2R Parallel Manipulators with a Dimensionally Homogeneous Constraint-Embedded Jacobian
,”
Mech. Mach. Theory
,
188
, pp.
105391
.
26.
Gosselin
,
C. M.
,
1992
, “
The Optimum Design of Robotic Manipulators Using Dexterity Indices
,”
Robot. Auton. Syst.
,
9
(
4
), pp.
213
226
.
27.
Pond
,
G.
, and
Carretero
,
J. A.
,
2006
, “
Formulating Jacobian Matrices for the Dexterity Analysis of Parallel Manipulators
,”
Mech. Mach. Theory
,
41
(
12
), pp.
1505
1519
.
28.
Li
,
W.
, and
Angeles
,
J.
,
2017
, “
A Novel Three-Loop Parallel Robot with Full Mobility: Kinematics, Singularity, Workspace, and Dexterity Analysis
,”
ASME J. Mech. Rob.
,
9
(
5
), pp.
051003
.
29.
Tandirci
,
M.
,
Angeles
,
J.
, and
Ranjbaran
,
F.
, “
The Characteristic Point and the Characteristic Length of Robotic Manipulators
,”
22nd Biennial Mechanisms Conference: Robotics, Spatial Mechanisms, and Mechanical Systems
,
Scottsdale, AZ
,
Sept. 13–16
,
American Society of Mechanical Engineers
, pp.
203
208
.
30.
Gogu
,
G.
,
2005
, “
Chebychev–Grübler–Kutzbach's Criterion for Mobility Calculation of Multi-Loop Mechanisms Revisited via Theory of Linear Transformations
,”
Eur. J. Mech. A/Solids
,
24
(
3
), pp.
427
441
.
31.
Kumar
,
P.
, and
Pellegrino
,
S.
,
2000
, “
Computation of Kinematic Paths and Bifurcation Points
,”
Int. J. Solids Struct.
,
37
(
46–47
), pp.
7003
7027
.
32.
Chen
,
Y.
,
Feng
,
J.
, and
Sun
,
Q. Z.
,
2018
, “
Lower-Order Symmetric Mechanism Modes and Bifurcation Behavior of Deployable Bar Structures With Cyclic Symmetry
,”
Int. J. Solids Struct.
,
139
, pp.
1
14
.
33.
Zhang
,
T. S.
,
Huang
,
H. L.
,
Guo
,
H. W.
, and
Li
,
B.
,
2019
, “
Singularity Avoidance for a Deployable Mechanism Using Elastic Joints
,”
ASME J. Mech. Des.
,
141
(
9
), pp.
094501
.
34.
Tsai
,
L. W.
,
1999
,
Robot Analysis: the Mechanics of Serial and Parallel Manipulators
,
John Wiley & Sons, Inc
,
New York
.
35.
Monsarrat
,
B.
, and
Gosselin
,
C. M.
,
2003
, “
Workspace Analysis and Optimal Design of a 3-leg 6-DOF Parallel Platform Mechanism
,”
IEEE Trans. Robot. Autom.
,
19
(
6
), pp.
954
966
.
36.
Li
,
G. T.
, and
Xu
,
P.
,
2020
, “
Design and Analysis of a Deployable Grasping Mechanism for Capturing Non-Cooperative Space Targets
,”
Aerosp. Sci. Technol.
,
106
, pp.
106230
.
37.
Yang
,
Y.
,
Peng
,
Y.
,
Pu
,
H. Y.
,
Chen
,
H. J.
,
Ding
,
X. L.
,
Chirikjian
,
G. S.
, and
Lyu
,
S. N.
,
2019
, “
Deployable Parallel Lower-Mobility Manipulators with Scissor-Like Elements
,”
Mech. Mach. Theory
,
135
, pp.
226
250
.
38.
Gonzalez
,
D. J.
, and
Asada
,
H. H.
, “
Triple Scissor Extender: A 6-DOF Lifting and Positioning Robot
,”
2016 IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
,
May 16–21
, pp.
847
853
.
39.
Jia
,
A. H.
,
Liu
,
X. Y.
,
Guan
,
Y. T.
,
Liu
,
Y. X.
,
Helian
,
Q. Z.
,
Liu
,
C. S.
,
Zhuang
,
Z. M.
, and
Kang
,
R. J.
,
2024
, “
Design, Analysis and Experiment of a Modular Deployable Continuum Robot
,”
Machines
,
12
(
8
), pp.
544
.
40.
Choi
,
J. W.
,
Lee
,
D.
,
Hwang
,
K.
, and
Kim
,
B.
,
2019
, “
Design, Fabrication, and Evaluation of a Passive Deployment Mechanism for Deployable Space Telescope
,”
Adv. Mech. Eng.
,
11
(
5
), pp.
1687814019852258
.
41.
Zhao
,
J. K.
,
Zhao
,
C.
,
Wang
,
K.
,
Zhao
,
H. F.
, and
Zhang
,
F.
,
2024
, “
Design and Analysis of n(3-RRU) Deployable and Reconfigurable Serial-Parallel Manipulator for on-Orbit Manipulation and Capture
,”
Aerosp. Sci. Technol.
,
146
, pp.
108942
.
42.
Li
,
G. T.
,
Huang
,
H. L.
,
Guo
,
H. W.
, and
Li
,
B.
,
2019
, “
Design, Analysis and Control of a Novel Deployable Grasping Manipulator
,”
Mech. Mach. Theory
,
138
, pp.
182
204
.
43.
Gao
,
C. Q.
,
Huang
,
H. L.
, and
Li
,
B.
, “
Design and Analysis of a Novel Deployable Robotic Grasper
,”
2019 IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Dali, China
,
Dec. 6–8
, pp.
481
486
.
44.
Cheng
,
P.
,
Cao
,
W. A.
,
Wang
,
T. L.
, and
Chen
,
G. D.
,
2025
, “
Design and Analysis of a new Deployable Articulated Mast Mechanism With Two-Dimensional Deploying-Folding Motion
,”
ASME J. Mech. Rob.
,
17
(
2
), pp.
021005
.
45.
Chen
,
W. J.
,
Luo
,
Y. Z.
,
Fu
,
G. Y.
,
Gong
,
J. H.
, and
Dong
,
S. L.
,
2001
, “
Design Conception and Deployment Simulation for a Highly Synchronized Extendable/Retractable Space Mast
,”
Int. J. Space Struct.
,
16
(
4
), pp.
261
269
.
46.
Li
,
Y. N.
,
Huang
,
H. L.
, and
Li
,
B.
,
2023
, “
Design of a Deployable Continuum Robot Using Elastic Kirigami-Origami
,”
IEEE Robot. Autom. Lett.
,
8
(
12
), pp.
8382
8389
.
47.
Matsuo
,
H.
,
Asada
,
H. H.
, and
Takeda
,
Y.
,
2020
, “
Design of a Novel Multiple-DOF Extendable Arm With Rigid Components Inspired by a Deployable Origami Structure
,”
IEEE Robot. Autom. Lett.
,
5
(
2
), pp.
2730
2737
.
48.
Gao
,
C. Q.
,
Huang
,
H. L.
,
Yang
,
G.
,
Li
,
B.
, and
Huang
,
K.
, “
Design and Analysis of a Novel 3-DOF Deployable Grasping Mechanism
,”
2020 IEEE International Conference on Real-Time Computing and Robotics (RCAR)
,
Asahikawa, Japan
,
Sept. 28–29
, pp.
199
203
.
49.
Jiang
,
Z. B.
,
Huang
,
H. L.
,
Huang
,
H. X.
, and
Li
,
B.
, “
A Truss-Type Deployable Manipulator Actuated by Parallel Twisted and Coiled Nylon Fiber Actuator
,”
2020 IEEE International Conference on Real-Time Computing and Robotics (RCAR)
,
Asahikawa, Japan
,
Sept. 28–29
, pp.
105
110
.
50.
Zhuang
,
Z. M.
,
Zhang
,
Z.
,
Guan
,
Y. T.
,
Wei
,
W.
,
Li
,
M.
,
Tang
,
Z.
,
Kang
,
R. J.
,
Song
,
Z. B.
, and
Dai
,
J. S.
,
2022
, “
Design and Control of SLPM-Based Extensible Continuum arm
,”
ASME J. Mech. Rob.
,
14
(
6
), pp.
061003
.
51.
Agarwal
,
A.
,
Nasa
,
C.
, and
Bandyopadhyay
,
S.
,
2016
, “
Dynamic Singularity Avoidance for Parallel Manipulators Using a Task-Priority Based Control Scheme
,”
Mech. Mach. Theory
,
96
, pp.
107
126
.
52.
Isaksson
,
M.
,
2017
, “
Kinematically Redundant Planar Parallel Mechanisms for Optimal Singularity Avoidance
,”
ASME J. Mech. Des.
,
139
(
4
), pp.
042302
.
53.
Sun
,
T.
,
Liang
,
D.
, and
Song
,
Y. M.
,
2017
, “
Singular-Perturbation-Based Nonlinear Hybrid Control of Redundant Parallel Robot
,”
IEEE Trans. Ind. Electron.
,
65
(
4
), pp.
3326
3336
.
You do not currently have access to this content.