Abstract

The small jumping-crawling robot improves its obstacle-crossing ability by selecting appropriate locomotion methods. However, current research on jumping-crawling robots remains focused on enhancing specific aspects of performance, and several issues still exist, including nonadjustable gaits, poor stability, nonadjustable jumping posture, and poor motion continuity. This article presents a small jumping-crawling robot with decoupled jumping and crawling mechanisms, offline adjustable gaits, autonomous self-righting, autonomous steering, and certain slope-climbing abilities. The crawling mechanism adopts a partially adjustable Klann six-bar linkage, which can generate four stride lengths and three gaits. The jumping mechanism is designed as a six-bar linkage with passive compliance, and an active clutch allows energy storage and release in any state. The autonomous self-righting mechanism enables the robot to self-right after tipping over, meanwhile providing support, steering, and posture adjustment functions. Prototype experiments show that the designed robot demonstrates good motion stability and can climb a 45 deg slope without tipping over. The robot shows excellent steering performance, with a single action taking 5 s and achieving a steering angle of 11.5 deg. It also exhibits good motion continuity, with an average recovery time of 12 s to return to crawling mode after a jump. Crawling experiments on rough terrain demonstrate the feasibility of applying the designed robot in real-world scenarios.

References

1.
Vidyasagar
,
A.
,
Zufferey
,
J.-C.
,
Floreano
,
D.
, and
Kovač
,
M.
,
2015
, “
Performance Analysis of Jump-Gliding Locomotion for Miniature Robotics
,”
Bioinspir. Biomim.
,
10
(
2
), p.
025006
.
2.
Woodward
,
M. A.
, and
Sitti
,
M.
,
2011
, “
Design of a Miniature Integrated Multi-Modal Jumping and Gliding Robot
,”
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Francisco, CA
,
Sept. 25–30
, IEEE, pp.
556
561
.
3.
Woodward
,
M. A.
, and
Sitti
,
M.
,
2014
, “
Multimo-Bat: A Biologically Inspired Integrated Jumping–Gliding Robot
,”
Int. J. Rob. Res.
,
33
(
12
), pp.
1511
1529
.
4.
Chae
,
S.-H.
,
Baek
,
S.-M.
,
Lee
,
J.
, and
Cho
,
K.-J.
,
2022
, “
Agile and Energy-Efficient Jumping–Crawling Robot Through Rapid Transition of Locomotion and Enhanced Jumping Height Adjustment
,”
IEEE/ASME Trans. Mechatron.
,
27
(
6
), pp.
5890
5901
.
5.
Jung
,
G.-P.
,
Casarez
,
C. S.
,
Lee
,
J.
,
Baek
,
S.-M.
,
Yim
,
S.-J.
,
Chae
,
S.-H.
,
Fearing
,
R. S.
, and
Cho
,
K.-J.
,
2019
, “
JumpRoACH: A Trajectory-Adjustable Integrated Jumping–Crawling Robot
,”
IEEE/ASME Trans. Mechatron.
,
24
(
3
), pp.
947
958
.
6.
Yim
,
S.
,
Baek
,
S.-M.
,
Lee
,
P.
,
Chae
,
S.-H.
,
Lee
,
J.
,
Huh
,
S.-H.
,
Jung
,
G.-P.
, and
Cho
,
K.-J.
,
2024
, “
Development of the Sub-10 cm, Sub-100 g Jumping–Crawling Robot
,”
Intell. Service Rob.
,
17
(
1
), pp.
19
32
.
7.
Spiegel
,
S.
,
Sun
,
J.
, and
Zhao
,
J.
,
2023
, “
A Shape-Changing Wheeling and Jumping Robot Using Tensegrity Wheels and Bistable Mechanism
,”
IEEE/ASME Trans. Mechatron.
,
28
(
4
), pp.
2073
2082
.
8.
Guo
,
T.
,
Liu
,
J.
,
Liang
,
H.
,
Zhang
,
Y.
,
Chen
,
W.
,
Xia
,
X.
,
Wang
,
M.
, and
Wang
,
Z.
,
2022
, “
Design and Dynamic Analysis of Jumping Wheel-Legged Robot in Complex Terrain Environment
,”
Front. Neurorob.
,
16
(
12
), p.
1066714
.
9.
Chen
,
H.
,
Wang
,
B.
,
Hong
,
Z.
,
Shen
,
C.
,
Wensing
,
P. M.
, and
Zhang
,
W.
,
2020
, “
Underactuated Motion Planning and Control for Jumping With Wheeled-Bipedal Robots
,”
IEEE Rob. Autom. Lett.
,
6
(
2
), pp.
747
754
.
10.
Kim
,
Y.-S.
,
Jung
,
G.-P.
,
Kim
,
H.
,
Cho
,
K.-J.
, and
Chu
,
C.-N.
,
2014
, “
Wheel Transformer: A Wheel-Leg Hybrid Robot With Passive Transformable Wheels
,”
IEEE Trans. Rob.
,
30
(
6
), pp.
1487
1498
.
11.
Wang
,
S.
,
Chen
,
Z.
,
Li
,
J.
,
Wang
,
J.
,
Li
,
J.
, and
Zhao
,
J.
,
2021
, “
Flexible Motion Framework of the Six Wheel-Legged Robot: Experimental Results
,”
IEEE/ASME Trans. Mechatron.
,
27
(
4
), pp.
2246
2257
.
12.
Ni
,
L.
,
Ma
,
F.
,
Ge
,
L.
, and
Wu
,
L.
,
2021
, “
Design and Posture Control of a Wheel-Legged Robot With Actively Passively Transformable Suspension System
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
011014
.
13.
Tu
,
Z.
,
Hui
,
C.
,
Liu
,
L.
,
Zhou
,
Y.
,
Romano
,
D. R.
, and
Deng
,
X.
,
2021
, “
Crawl and Fly: A Bio-Inspired Robot Utilizing Unified Actuation for Hybrid Aerial-Terrestrial Locomotion
,”
IEEE Rob. Autom. Lett.
,
6
(
4
), pp.
7549
7556
.
14.
Wu
,
C.
,
Xiao
,
Y.
,
Zhao
,
J.
,
Mou
,
J.
,
Cui
,
F.
, and
Liu
,
W.
,
2024
, “
A Multi-Modal Tailless Flapping-Wing Robot Capable of Flying, Crawling, Self-Righting and Horizontal Take-off
,”
IEEE Rob. Autom. Lett.
,
9
(
5
), pp.
4734
4741
.
15.
Ching
,
T.
,
Lee
,
J. Z. W.
,
Win
,
S. K. H.
,
Win
,
L. S. T.
,
Sufiyan
,
D.
,
Lim
,
C. P. X.
,
Nagaraju
,
N.
,
Toh
,
Y.-C.
,
Foong
,
S.
, and
Hashimoto
,
M.
,
2024
, “
Crawling, Climbing, Perching, and Flying by FiBa Soft Robots
,”
Sci. Rob.
,
9
(
92
), p.
eadk4533
.
16.
Hong
,
C.
,
Tang
,
D.
,
Quan
,
Q.
,
Cao
,
Z.
, and
Deng
,
Z.
,
2020
, “
A Combined Series-Elastic Actuator & Parallel-Elastic Leg No-Latch Bio-Inspired Jumping Robot
,”
Mech. Mach. Theory
,
149
(
7
), p.
103814
.
17.
Zhang
,
C.
,
Zou
,
W.
,
Ma
,
L.
, and
Wang
,
Z.
,
2020
, “
Biologically Inspired Jumping Robots: A Comprehensive Review
,”
Rob. Auton. Syst.
,
124
, p.
103362
.
18.
Zhao
,
J.
,
Yan
,
W.
,
Xi
,
N.
,
Mutka
,
M. W.
, and
Xiao
,
L.
,
2014
, “
A Miniature 25 Grams Running and Jumping Robot
,”
2014 IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong, China
,
May 31–June 7
, IEEE, pp.
5115
5120
.
19.
Lambrecht
,
B. G.
,
Horchler
,
A. D.
, and
Quinn
,
R. D.
,
2005
, “
A Small, Insect-Inspired Robot That Runs and Jumps
,”
Proceedings of the 2005 IEEE International Conference on Robotics and Automation
,
Barcelona, Spain
,
Apr. 18–22
, IEEE, pp.
1240
1245
.
20.
Ducros
,
C.
,
Hauser
,
G.
,
Mahjoubi
,
N.
,
Girones
,
P.
,
Boisset
,
L.
,
Sorin
,
A.
,
Jonquet
,
E.
,
Falciola
,
J. M.
, and
Benhamou
,
A.
,
2017
, “
RICA: A Tracked Robot for Sampling and Radiological Characterization in the Nuclear Field
,”
J. Field Rob.
,
34
(
3
), pp.
583
599
.
21.
Dong
,
P.
,
Wang
,
X.
,
Xing
,
H.
,
Liu
,
Y.
, and
Zhang
,
M.
,
2016
, “
Design and Control of a Tracked Robot for Search and Rescue in Nuclear Power Plant
,”
2016 International Conference on Advanced Robotics and Mechatronics (ICARM)
,
Macau, China
,
Aug. 18–20
, IEEE, pp.
330
335
.
22.
Chen
,
Y.
,
Lian
,
L.
,
Hsieh
,
Y.-H.
,
Nguyen
,
Q.
, and
Gupta
,
S. K.
,
2023
, “
Informed Sampling-Based Planning to Enable Legged Robots to Safely Negotiate Permeable Obstacles
,”
ASME J. Mech. Rob.
,
15
(
5
), p.
051002
.
23.
Desai
,
S. G.
,
Annigeri
,
A. R.
, and
TimmanaGouda
,
A.
,
2019
, “
Analysis of a New Single Degree-of-Freedom Eight Link Leg Mechanism for Walking Machine
,”
Mech. Mach. Theory
,
140
(
10
), pp.
747
764
.
24.
Klann
,
J.
,
2002
, “
Walking Device
,” U.S. Patent No. 6.
25.
Klann
,
J. C.
,
1998
, “
Walking device, Klann linkage
,”
US Provisional Patent Application Ser.
26.
Liu
,
G.-H.
,
Lin
,
H.-Y.
,
Lin
,
H.-Y.
,
Chen
,
S.-T.
, and
Lin
,
P.-C.
,
2014
, “
A Bio-Inspired Hopping Kangaroo Robot With an Active Tail
,”
J. Bion. Eng.
,
11
(
4
), pp.
541
555
.
27.
Yan
,
Z.
,
Yang
,
H.
,
Zhang
,
W.
,
Lin
,
F.
,
Gong
,
Q.
, and
Zhang
,
Y.
,
2022
, “
Bionic Fish Tail Design and Trajectory Tracking Control
,”
Ocean Eng.
,
257
(
15
), p.
111659
.
28.
Wang
,
T.
,
Wang
,
Z.
, and
Zhang
,
B.
,
2021
, “
Mechanism Design and Experiment of a Bionic Turtle Dredging Robot
,”
Machines
,
9
(
5
), p.
86
.
29.
Gong
,
Y.
,
Behr
,
A. M.
,
Graf
,
N. M.
,
Chen
,
K.
,
Gong
,
Z.
, and
Daltorio
,
K. A.
,
2023
, “
A Walking Claw for Tethered Object Retrieval
,”
ASME J. Mech. Rob.
,
15
(
5
), p.
051014
.
30.
Bal
,
C.
,
2021
, “
Neural Coupled Central Pattern Generator Based Smooth Gait Transition of a Biomimetic Hexapod Robot
,”
Neurocomputing
,
420
(
2
), pp.
210
226
.
31.
Zefran
,
M.
, and
Bullo
,
F.
,
2005
, “Lagrangian Dynamics,”
Robotics and Automation Handbook
,
T.
Kurfess
, ed.,
CRC Press
,
Boca Raton, FL
, pp.
5
1
.
You do not currently have access to this content.