Abstract

Autonomous drones deployed on missions for inspection, surveillance, search, or rescue often need the ability to interact with the environment or land on unknown terrains. Existing developments for grasping objects with drones, landing on uneven terrain, and perching on various support structures to conserve battery exhibit one or two functions with dedicated mechanisms, making them bulky or use-case specific for a drone. This article proposes a novel underactuated multifunctional mechanism (GPALM) capable of active grasping, passive perching, and acting as adaptive landing gear. GPALM comprises two linkage-driven underactuated fingers or legs, which can be driven actively (using a linear actuator) or passively (using two closed-loop linkages). Introducing an elastic element in series with the active mechanism decouples the active power while perching and allows passive motion. The experimental demonstrations show that GPALM can actively grasp a wide range of objects of different shapes and sizes, and it can passively perch on cylindrical support structures with its own weight. Thanks to the underactuation, the mechanism can adapt to the landing surface’s inclination to keep the drone leveled with respect to the ground. The developed laboratory prototype can carry a payload of up to 3 kg and land on inclined surfaces of up to 10 deg.

References

1.
Kim
,
K.
,
Spieler
,
P.
,
Lupu
,
E.-S.
,
Ramezani
,
A.
, and
Chung
,
S.-J.
,
2021
, “
A Bipedal Walking Robot That Can Fly, Slackline, and Skateboard
,”
Sci. Rob.
,
6
(
59
), p.
eabf8136
.
2.
Dickson
,
J. D.
, and
Clark
,
J. E.
,
2013
, “
Design of a Multimodal Climbing and Gliding Robotic Platform
,”
IEEE/ASME Trans. Mechatron.
,
18
(
2
), pp.
494
505
.
3.
Mintchev
,
S.
, and
Floreano
,
D.
,
2016
, “
Adaptive Morphology: A Design Principle for Multimodal and Multifunctional Robots
,”
IEEE Rob. Autom. Mag.
,
23
(
3
), pp.
42
54
.
4.
Broers
,
K. C. V.
, and
Armanini
,
S. F.
,
2022
, “
Design and Testing of a Bioinspired Lightweight Perching Mechanism for Flapping-Wing MAVs Using Soft Grippers
,”
IEEE Rob. Autom. Lett.
,
7
(
3
), pp.
7526
7533
.
5.
Stewart
,
W.
,
Guarino
,
L.
,
Piskarev
,
Y.
, and
Floreano
,
D.
,
2023
, “
Passive Perching With Energy Storage for Winged Aerial Robots
,”
Adv. Intell. Syst.
,
5
(
4
), p.
2100150
.
6.
Ruiz
,
F.
,
Arrue
,
B. C.
, and
Ollero
,
A.
,
2022
, “
Sophie: Soft and Flexible Aerial Vehicle for Physical Interaction With the Environment
,”
IEEE Rob. Autom. Lett.
,
7
(
4
), pp.
11086
11093
.
7.
Sy Nguyen
,
V.
,
Jung
,
J.
,
Jung
,
S.
,
Joe
,
S.
, and
Kim
,
B.
,
2021
, “
Deployable Hook Retrieval System for UAV Rescue and Delivery
,”
IEEE Access
,
9
, pp.
74632
74645
.
8.
Toyoda
,
R.
,
Yamada
,
Y.
,
Mao
,
Z.
,
Kuwajima
,
Y.
,
Sugisaki
,
T.
,
Senevirathna
,
A. M. N. N.
,
Premachandra
,
C.
,
Hosoya
,
N.
, and
Maeda
,
S.
,
2024
, “
A Stretchable Jamming Gripper Grasping Flat Plates
,”
IEEE Access
,
12
, pp.
48764
48773
.
9.
Li
,
Z.
,
Bégoc
,
V.
,
Chriette
,
A.
, and
Fantoni
,
I.
,
2023
, “
Wrench Capability Analysis and Control Allocation of a Collaborative Multi-Drone Grasping Robot
,”
ASME J. Mech. Rob.
,
15
(
2
), p.
021003
.
10.
Amici
,
C.
,
Ceresoli
,
F.
,
Pasetti
,
M.
,
Saponi
,
M.
,
Tiboni
,
M.
, and
Zanoni
,
S.
,
2021
, “
Review of Propulsion System Design Strategies for Unmanned Aerial Vehicles
,”
Appl. Sci.
,
11
(
11
), p.
5209
.
11.
Roderick
,
W. R. T.
,
Cutkosky
,
M. R.
, and
Lentink
,
D.
,
2021
, “
Bird-Inspired Dynamic Grasping and Perching in Arboreal Environments
,”
Sci. Rob.
,
6
(
61
), p.
eabj7562
.
12.
Stewart
,
W.
,
Ajanic
,
E.
,
Müller
,
M.
, and
Floreano
,
D.
,
2022
, “
How to Swoop and Grasp Like a Bird With a Passive Claw for a High-Speed Grasping
,”
IEEE/ASME Trans. Mechatron.
,
27
(
5
), pp.
3527
3535
.
13.
Thomas
,
J.
,
Pope
,
M.
,
Loianno
,
G.
,
Hawkes
,
E. W.
,
Estrada
,
M. A.
,
Jiang
,
H.
,
Cutkosky
,
M. R.
, and
Kumar
,
V.
,
2016
, “
Aggressive Flight With Quadrotors for Perching on Inclined Surfaces
,”
ASME J. Mech. Rob.
,
8
(
5
), p.
051007
.
14.
Papayanopoulos
,
J.
,
Webb
,
K.
, and
Rogers
,
J.
,
2019
, “
An Autonomous Docking Mechanism for Vertical Lift Unmanned Aircraft
,”
ASME J. Mech. Rob.
,
11
(
6
), p.
061009
.
15.
Doyle
,
C. E.
,
Bird
,
J. J.
,
Isom
,
T. A.
,
Kallman
,
J. C.
,
Bareiss
,
D. F.
,
Dunlop
,
D. J.
,
King
,
R. J.
,
Abbott
,
J. J.
, and
Minor
,
M. A.
,
2013
, “
An Avian-Inspired Passive Mechanism for Quadrotor Perching
,”
IEEE/ASME Trans. Mechatron.
,
18
(
2
), pp.
506
517
.
16.
Backus
,
S. B.
,
Sustaita
,
D.
,
Odhner
,
L. U.
, and
Dollar
,
A. M.
,
2015
, “
Mechanical Analysis of Avian Feet: Multiarticular Muscles in Grasping and Perching
,”
R. Soc. Open Sci.
,
2
(
2
), p.
140350
.
17.
Thomas
,
J.
,
Polin
,
J.
,
Sreenath
,
K.
, and
Kumar
,
V.
,
2013
, “
Avian-Inspired Grasping for Quadrotor Micro UAVs
,” Volume 6A: 37th Mechanisms and Robotics Conference,
American Society of Mechanical Engineers
, p.
V06AT07A014
.
18.
McLaren
,
A.
,
Fitzgerald
,
Z.
,
Gao
,
G.
, and
Liarokapis
,
M.
,
2019
, “
A Passive Closing, Tendon Driven, Adaptive Robot Hand for Ultra-Fast, Aerial Grasping and Perching
,” 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
IEEE
, pp.
5602
5607
.
19.
Meng
,
J.
,
Buzzatto
,
J.
,
Liu
,
Y.
, and
Liarokapis
,
M.
,
2022
, “
On Aerial Robots With Grasping and Perching Capabilities: A Comprehensive Review
,”
Front. Rob. AI
,
8
, p.
739173
.
20.
Hsiao
,
H.
,
Sun
,
J.
,
Zhang
,
H.
, and
Zhao
,
J.
,
2022
, “
A Mechanically Intelligent and Passive Gripper for Aerial Perching and Grasping
,”
IEEE/ASME Trans. Mechatron.
,
27
(
6
), pp.
5243
5253
.
21.
Sarkisov
,
Y. S.
,
Yashin
,
G. A.
,
Tsykunov
,
E. V.
, and
Tsetserukou
,
D.
,
2018
, “
DroneGear: A Novel Robotic Landing Gear With Embedded Optical Torque Sensors for Safe Multicopter Landing on an Uneven Surface
,”
IEEE Rob. Autom. Lett.
,
3
(
3
), pp.
1912
1917
.
22.
Baker
,
S.
,
Soccol
,
D.
,
Postula
,
A.
, and
Srinivasan
,
M. V.
,
2013
, “
Passive Landing Gear Using Coupled Mechanical Design
,” Proceedings of Australasian Conference on Robotics and Automation,
University of New South Wales Sydney
, pp.
1
8
.
23.
Zhang
,
K.
,
Chermprayong
,
P.
,
Tzoumanikas
,
D.
,
Li
,
W.
,
Grimm
,
M.
,
Smentoch
,
M.
,
Leutenegger
,
S.
, and
Kovac
,
M.
,
2019
, “
Bioinspired Design of a Landing System With Soft Shock Absorbers for Autonomous Aerial Robots
,”
J. Field Rob.
,
36
(
1
), pp.
230
251
.
24.
Backus
,
S. B.
, and
Dollar
,
A. M.
,
2018
, “
A Prismatic-Revolute-Revolute Joint Hand for Grasping From Unmanned Aerial Vehicles and Other Minimally Constrained Vehicles
,”
ASME J. Mech. Rob.
,
10
(
2
), p.
025006
.
25.
Popek
,
K. M.
,
Johannes
,
M. S.
,
Wolfe
,
K. C.
,
Hegeman
,
R. A.
,
Hatch
,
J. M.
,
Moore
,
J. L.
,
Katyal
,
K. D.
,
Yeh
,
B. Y.
, and
Bamberger
,
R. J.
,
2018
, “
Autonomous Grasping Robotic Aerial System for Perching (AGRASP)
,” 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
IEEE
, pp.
1
9
.
26.
Hang
,
K.
,
Lyu
,
X.
,
Song
,
H.
,
Stork
,
J. A.
,
Dollar
,
A. M.
,
Kragic
,
D.
, and
Zhang
,
F.
,
2019
, “
Perching and Resting—A Paradigm for UAV Maneuvering With Modularized Landing Gears
,”
Sci. Rob.
,
4
(
28
), p.
eaau6637
.
27.
Lin
,
T.-J.
,
Long
,
S.
, and
Stol
,
K. A.
,
2018
, “
Automated Perching of a Multirotor UAV Atop Round Timber Posts
,” 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM),
IEEE
, pp.
486
491
.
28.
Nadan
,
P. M.
,
Anthony
,
T. M.
,
Michael
,
D. M.
,
Pflueger
,
J. B.
,
Sethi
,
M. S.
,
Shimazu
,
K. N.
,
Tieu
,
M.
, and
Lee
,
C. L.
,
2019
, “
A Bird-Inspired Perching Landing Gear System
,”
ASME J. Mech. Rob.
,
11
(
6
), p.
061002
.
29.
Burroughs
,
M. L.
,
Beauwen Freckleton
,
K.
,
Abbott
,
J. J.
, and
Minor
,
M. A.
,
2016
, “
A Sarrus-Based Passive Mechanism for Rotorcraft Perching
,”
ASME J. Mech. Rob.
,
8
(
1
), p.
011010
.
30.
Chi
,
W.
,
Low
,
K. H.
,
Hoon
,
K. H.
, and
Tang
,
J.
,
2014
, “
An Optimized Perching Mechanism for Autonomous Perching With a Quadrotor
,” 2014 IEEE International Conference on Robotics and Automation (ICRA),
IEEE
, pp.
3109
3115
.
You do not currently have access to this content.