Abstract

Accurately analyzing the large deformation behaviors of compliant mechanisms has always been a significant challenge in the design process. The classical Euler–Bernoulli beam theory serves as the primary theoretical basis for the large deformation analysis of compliant mechanisms. However, neglecting shear effects may reduce the accuracy of modeling compliant mechanisms. Inspired by the beam constraint model, this study takes a step further to develop a Timoshenko beam constraint model (TBCM) for initially curved beams to capture intermediate-range deflections under beam-end loading conditions. On this basis, the chained Timoshenko beam constraint model (CTBCM) is proposed for large deformation analysis and kinetostatic modeling of compliant mechanisms. The accuracy and feasibility of the proposed TBCM and CTBCM have been validated through modeling and analysis of curved beam mechanisms. Results indicate that TBCM and CTBCM are more accurate compared to the Euler beam constraint model (EBCM) and the chained Euler beam constraint model (CEBCM). Additionally, CTBCM has been found to offer computational advantages, as it requires fewer discrete elements to achieve convergence.

References

1.
Ling
,
M.
,
Howell
,
L. L.
,
Cao
,
J.
, and
Chen
,
G.
,
2020
, “
Kinetostatic and Dynamic Modeling of Flexure-Based Compliant Mechanisms: A Survey
,”
ASME Appl. Mech. Rev.
,
72
(
3
), p.
030802
.
2.
Apuleo
,
G.
,
2018
, “Chapter 2—Aircraft Morphing—An Industry Vision.”
Morphing Wing Technologies
,
A.
Concilio
,
I.
Dimino
,
L.
Lecce
, and
R.
Pecora
, eds.,
Butterworth-Heinemann
,
Kidlington, UK
, pp.
85
101
.
3.
Jagtap
,
S. P.
,
Deshmukh
,
B. B.
, and
Pardeshi
,
S.
,
2021
, “
Applications of Compliant Mechanism in Today's World—A Review
,”
Proc. J. Phys.: Conf. Ser.
,
1969
(
1
), p.
012013
.
4.
Howell
,
L. L.
,
2013
, “Compliant Mechanisms,”
Proceedings of the 21st Century Kinematics
,
J. M.
McCarthy
, ed.,
Springer
,
London
, pp.
189
216
.
5.
Das
,
T. K.
,
Shirinzadeh
,
B.
,
Al-Jodah
,
A.
,
Ghafarian
,
M.
, and
Pinskier
,
J.
,
2021
, “
A Novel Compliant Piezoelectric Actuated Symmetric Microgripper for the Parasitic Motion Compensation
,”
Mech. Mach. Theory
,
155
, p.
104069
.
6.
Nguyen
,
V.-K.
,
Pham
,
H.-T.
,
Pham
,
H.-H.
, and
Dang
,
Q.-K.
,
2021
, “
Optimization Design of a Compliant Linear Guide for High-Precision Feed Drive Mechanisms
,”
Mech. Mach. Theory
,
165
, p.
104442
.
7.
Thomas
,
T. L.
,
Kalpathy Venkiteswaran
,
V.
,
Ananthasuresh
,
G. K.
, and
Misra
,
S.
,
2021
, “
Surgical Applications of Compliant Mechanisms: A Review
,”
ASME J. Mech. Rob.
,
13
(
2
), p.
020801
.
8.
Li
,
X.
,
Liu
,
Y.
,
Ge
,
L.
, and
Zhang
,
Z.
,
2024
, “
A Large-Stroke Reluctance-Actuated Nanopositioner: Compliant Compensator for Enhanced Linearity and Precision Motion Control
,”
IEEE/ASME Trans. Mechatron.
,
29
(
4
), pp.
2947
2955
.
9.
Chen
,
H.
,
Tao
,
W.
,
Leu
,
M. C.
, and
Yin
,
Z.
,
2020
, “
Dynamic Gesture Design and Recognition for Human–Robot Collaboration With Convolutional Neural Networks
,”
Proceedings of the 2020 International Symposium on Flexible Automation
,
Virtual, Online
, p. V001T09A001.
10.
Zhao
,
P.
,
Zhang
,
Y.
,
Guan
,
H.
,
Deng
,
X.
, and
Chen
,
H.
,
2021
, “
Design of a Single-Degree-of-Freedom Immersive Rehabilitation Device for Clustered Upper-Limb Motion
,”
ASME J. Mech. Rob.
,
13
(
3
), p.
031006
.
11.
Chen
,
H.
,
Zendehdel
,
N.
,
Leu
,
M. C.
,
Moniruzzaman
,
M.
,
Yin
,
Z.
, and
Hajmohammadi
,
S.
,
2024
, “
Repetitive Action Counting Through Joint Angle Analysis and Video Transformer Techniques
,”
Proceedings of the 2024 International Symposium on Flexible Automation
,
Seattle, WA
,
July 21–24
, p. V001T08A003.
12.
Chen
,
H.
,
Zendehdel
,
N.
,
Leu
,
M. C.
, and
Yin
,
Z.
,
2024
, “
Fine-Grained Activity Classification in Assembly Based on Multi-visual Modalities
,”
J. Intell. Manuf.
,
35
(
5
), pp.
2215
2233
.
13.
Wu
,
K.
,
Zheng
,
G.
, and
Chen
,
G.
,
2023
, “
Extending Timoshenko Beam Theory for Large Deflections in Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
15
(
6
), p.
061012
.
14.
Achleitner
,
J.
, and
Wehrle
,
E.
,
2022
, “
On Material Selection for Topology Optimized Compliant Mechanisms
,”
Mech. Mach. Theory
,
167
, p.
104474
.
15.
Hargrove
,
B.
,
Frecker
,
M.
,
Nastevska
,
A.
, and
Jovanova
,
J.
,
2024
, “
An Analytical Model for Nonlinear-Elastic Compliant Mechanisms With Tension–Compression Asymmetry
,”
ASME J. Mech. Rob.
,
16
(
12
), p.
121006
.
16.
Wu
,
S.
,
Ling
,
M.
, and
Jiang
,
Z.
,
2025
, “
A Systematic Procedure of Transfer Matrix Method to Analyze Compliant Mechanisms With Irregularly Connected Building Blocks
,”
ASME J. Mech. Rob.
,
17
(
7
), p.
074501
.
17.
Halverson
,
P. A.
,
Bowden
,
A. E.
, and
Howell
,
L. L.
,
2011
, “
A Pseudo-rigid-body Model of the Human Spine to Predict Implant-Induced Changes on Motion
,”
ASME J. Mech. Rob.
,
3
(
4
), p.
041008
.
18.
Liu
,
T.
,
Hao
,
G.
,
Zhu
,
J.
,
Kuresangsai
,
P.
,
Abdelaziz
,
S.
, and
Wehrle
,
E.
,
2024
, “
Modeling Compliant Bistable Mechanisms: An Energy Method Based on the High-Order Smooth Curvature Model
,”
Int. J. Mech. Sci.
,
275
, p.
109315
.
19.
Awtar
,
S.
,
2003
,
Synthesis and Analysis of Parallel Kinematic XY Flexure Mechanisms
,
Massachusetts Institute of Technology
.
20.
Awtar
,
S.
,
Slocum
,
A. H.
, and
Sevincer
,
E.
,
2006
, “
Characteristics of Beam-Based Flexure Modules
,”
ASME J. Mech. Des.
,
129
(
6
), pp.
625
639
.
21.
Awtar
,
S.
, and
Sen
,
S.
,
2010
, “
A Generalized Constraint Model for Two-Dimensional Beam Flexures: Nonlinear Load-Displacement Formulation
,”
ASME J. Mech. Des.
,
132
(
8
), p.
081008
.
22.
Chen
,
G.
,
Ma
,
F.
,
Hao
,
G.
, and
Zhu
,
W.
,
2018
, “
Modeling Large Deflections of Initially Curved Beams in Compliant Mechanisms Using Chained Beam Constraint Model
,”
ASME J. Mech. Rob.
,
11
(
1
), p.
011002
.
23.
Chen
,
G.
, and
Ma
,
F.
,
2015
, “
Kinetostatic Modeling of Fully Compliant Bistable Mechanisms Using Timoshenko Beam Constraint Model
,”
ASME J. Mech. Des.
,
137
(
2
), p.
022301
.
24.
Chen
,
G.
, and
Bai
,
R.
,
2016
, “
Modeling Large Spatial Deflections of Slender Bisymmetric Beams in Compliant Mechanisms Using Chained Spatial-Beam Constraint Model
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041011
.
25.
Wu
,
K.
,
Zheng
,
G.
,
Chen
,
G.
, and
Awtar
,
S.
,
2024
, “
A Body-Frame Beam Constraint Model
,”
Mech. Mach. Theory
,
192
, p.
105517
.
26.
Ling
,
M.
,
Yuan
,
L.
, and
Zhang
,
X.
,
2024
, “
Geometrically Nonlinear Analysis of Compliant Mechanisms Using a Dynamic Beam Constraint Model (DBCM)
,”
Mech. Mach. Theory
,
191
, p.
105489
.
27.
Hao
,
G.
,
He
,
X.
, and
Awtar
,
S.
,
2019
, “
Design and Analytical Model of a Compact Flexure Mechanism for Translational Motion
,”
Mech. Mach. Theory
,
142
, p.
103593
.
28.
Phan
,
T.-V.
,
Truong
,
V. M.
,
Pham
,
H.-T.
, and
Nguyen
,
V.-K.
,
2023
, “
Design of a Novel Large-Stroke Compliant Constant-Torque Mechanism Based on Chained Beam-Constraint Model
,”
ASME J. Mech. Rob.
,
16
(
8
), p.
081006
.
29.
Niu
,
M.-Q.
,
Zhuang
,
Y.-S.
,
Han
,
W.-J.
, and
Chen
,
L.-Q.
,
2024
, “
History Dependent Analysis of Compliant Beams for Nonlinear Vibration Isolation
,”
Int. J. Mech. Sci.
,
281
, p.
109571
.
30.
Bazant
,
Z. P.
, and
Cedolin
,
L.
,
2010
,
Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories
,
World Scientific
,
Singapore
, pp.
30
33
.
31.
Cowper
,
G. R.
,
1966
, “
The Shear Coefficient in Timoshenko's Beam Theory
,”
ASME J. Appl. Mech.
,
33
(
2
), pp.
335
340
.
32.
Zhang
,
Z.
,
Chen
,
L.-W.
, and
Xu
,
Z.-D.
,
2022
, “
Snap-Through Behavior of Bistable Beam With Variable Sections: Mechanical Model and Experimental Study
,”
Smart Mater. Struct.
,
31
(
10
), p.
105004
.
33.
Li
,
P. Q.
,
Wang
,
K. F.
, and
Wang
,
B. L.
,
2024
, “
Nonlinear Vibration of the Sandwich Beam With Auxetic Honeycomb Core Under Thermal Shock
,”
Thin-Wall. Struct.
,
196
, p.
111479
.
34.
Wattanasakulpong
,
N.
,
Karamanli
,
A.
, and
Vo
,
T. P.
,
2024
, “
Nonlinear Dynamic Response of FG-GPLRC Beams Induced by Two Successive Moving Loads
,”
Eng. Anal. Boundary Elem.
,
159
, pp.
164
179
.
35.
Awtar
,
S.
, and
Sen
,
S.
,
2010
, “
A Generalized Constraint Model for Two-Dimensional Beam Flexures: Nonlinear Strain Energy Formulation
,”
ASME J. Mech. Des.
,
132
(
8
), p.
081009
.
36.
Zhu
,
J.
, and
Hao
,
G.
,
2024
, “
Modelling of a General Lumped-Compliance Beam for Compliant Mechanisms
,”
Int. J. Mech. Sci.
,
263
, p.
108779
.
37.
Yan
,
Z. G.
,
Wang
,
B. L.
, and
Wang
,
K. F.
,
2018
, “
Thermal Effects on the Structural Response of Planar Serpentine Interconnects
,”
Int. J. Mech. Sci.
,
135
, pp.
23
30
.
38.
Wang
,
Y.
,
Zhao
,
W.
,
Du
,
Y.
,
Dai
,
Z.
,
Liu
,
Y.
, and
Xu
,
F.
,
2023
, “
Substantial Curvature Effects on Compliant Serpentine Mechanics
,”
Mech. Mater.
,
184
, p.
104732
.
39.
Widlund
,
T.
,
Yang
,
S.
,
Hsu
,
Y.-Y.
, and
Lu
,
N.
,
2014
, “
Stretchability and Compliance of Freestanding Serpentine-Shaped Ribbons
,”
Int. J. Solids Struct.
,
51
(
23
), pp.
4026
4037
.
40.
Qiu
,
J.
,
Lang
,
J. H.
, and
Slocum
,
A. H.
,
2004
, “
A Curved-Beam Bistable Mechanism
,”
J. Microelectromech. Syst.
,
13
(
2
), pp.
137
146
.
You do not currently have access to this content.