Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Rigid foldability is a special property of rigid origami patterns, where each origami plane remains undeformed during continuous movement along the predetermined crease. Current research on the rigid foldability of origami patterns mainly focuses on kinematics, while less attention is paid to factors that cause deformation of the folding plane. Whether the relative spatial position of adjacent creases has been changed is a critical factor that influences the state (rigid or deformed) of the folding plane between the two adjacent creases during the folding process. This study considered two factors (linear relationship and Euclidean distance) to measure the changes in the spatial positions of creases, explored the relationship between the two factors and rigid folding, and identified deformation forms that affect rigid foldability. First, the origami pattern was regarded as a linkage mechanism, and the linear relationship between creases was determined from the single-vertex origami unit forming this origami structure. Then, the geometric parameters of the origami pattern were used to calculate the Euclidean distance between two points on adjacent creases during the folding process. If the linear relationship and Euclidean distance always remain the same, the origami pattern has rigid foldability. Based on changes in the Euclidean distance, this method can also help determine the main deformation of non-rigidly foldable origami patterns. In addition, it can be applied to origami patterns with four or five vertices and multiple loops, and it further provides a novel approach for determining the layout of the crease position and the judgment of rigid foldability during origami-inspired mechanism design.

References

1.
Fite
,
F. B.
, IV
,
Ming
,
N. H.
,
Ho
,
T. L.
,
2008
, “
Foldable Plastic Bowl
,” USD567592 Patent.
2.
Dai
,
J. S.
, and
Rees Jones
,
J.
,
1999
, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
375
382
.
3.
Quaglia
,
C. P.
,
Dascanio
,
A. J.
, and
Thrall
,
A. P.
,
2014
, “
Bascule Shelters: A Novel Erection Strategy for Origami Inspired Deployable Structures
,”
Eng. Struct.
,
75
, pp.
276
287
.
4.
Ye
,
K.
, and
Ji
,
J.
,
2023
, “
A Novel Morphing Propeller System Inspired by Origami-Based Structure
,”
ASME J. Mech. Rob.
,
15
(
1
), p.
011006
.
5.
O’Rourke
,
J.
,
2011
,
How to Fold It: The Mathematics of Linkages, Origami, and Polyhedra
,
Cambridge University Press
,
Cambridge, UK
.
6.
Miura
,
K.
,
1985
, “
Method of Packaging and Deployment of Large Membranes in Space
,” The Institute of Space and Astronautical Science Report No. 618, pp.
1
9
.
7.
Canes
,
D.
,
Lehman
,
A. C.
,
Farritor
,
S. M.
,
Oleynikov
,
D.
, and
Desai
,
M. M.
,
2009
, “
The Future of NOTES Instrumentation: Flexible Robotics and In Vivo Minirobots
,”
J. Endourol.
,
23
(
5
), pp.
787
792
.
8.
Zhang
,
K.
,
Qiu
,
C.
, and
Dai
,
J. S.
,
2016
, “
An Extensible Continuum Robot With Integrated Origami Parallel Modules
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031010
.
9.
Salerno
,
M.
,
Zhang
,
K.
,
Menciassi
,
A.
, and
Dai
,
J. S.
,
2016
, “
A Novel 4-DOF Origami Grasper With an SMA Actuation System for Minimally Invasive Surgery
,”
IEEE Trans. Rob.
,
32
(
3
), pp.
484
498
.
10.
Kuribayashi
,
K.
,
Tsuchiya
,
K.
,
You
,
Z.
,
Tomus
,
D.
,
Umemoto
,
M.
,
Ito
,
T.
, and
Sasaki
,
M.
,
2006
, “
Self-Deployable Origami Stent Grafts as a Biomedical Application of Nirich TiNi Shape Memory Alloy Foil
,”
Mater. Sci. Eng. A
,
419
(
1–2
), pp.
131
137
.
11.
In
,
H. J.
,
Kumar
,
S.
,
Shao-Horn
,
Y.
, and
Barbastathis
,
G.
,
2006
, “
Origami Fabrication of Nanostructured, Three-Dimensional Devices: Electrochemical Capacitors With Carbon Electrodes
,”
Appl. Phys. Lett.
,
88
(
8
), p.
083104
.
12.
Kwok
,
T. H.
,
Wang
,
C. C. L.
,
Deng
,
D.
,
Zhang
,
Y.
, and
Chen
,
Y.
,
2015
, “
Four-Dimensional Printing for Freeform Surfaces: Design Optimization of Origami and Kirigami Structures
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111413
.
13.
Yang
,
Y.
,
Hagiwara
,
I.
,
Diago
,
L.
, and
Shinoda
,
J.
,
2019
, “
An Origami Crease Pattern Generating Methodology for “Origami 3D Printer
,”
Proceedings of the ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 5B: 43rd Mechanisms and Robotics Conference
,
Anaheim, CA
,
Aug. 18–21
, p.
V05BT07A036
.
14.
Hull
,
T.
,
1994
, “
On the Mathematics of Flat Origamis
,”
Congressus Numerantium
,
100
, pp.
215
224
.
15.
Sareh
,
P.
,
2014
, “
Symmetric Descendants of the Miura-Ori
,”
Ph.D. dissertation
,
University of Cambridge
,
Cambridge, UK
.
16.
Hull
,
T. C.
,
2014
, “
Counting Mountain-Valley Assignments for Flat Folds
,”
Ars Combinatoria
,
67
(
2003
), pp.
175
188
.
17.
Dai
,
J. S.
, and
Jones
,
J. R.
,
2002
, “
Kinematics and Mobility Analysis of Carton Folds in Packing Manipulation Based on the Mechanism Equivalent
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
216
(
10
), pp.
959
970
.
18.
Dai
,
J. S.
, and
Jones
,
J. R.
,
2005
, “
Matrix Representation of Topological Changes in Metamorphic Mechanisms
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
837
840
.
19.
Evans
,
T. A.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2015
, “
Rigidly Foldable Origami Twists
,”
Origami 6: Proceedings of the 6th International Meeting of Origami Mathematics
,
Tokyo
,
2014
.
20.
Wu
,
W.
, and
You
,
Z.
,
2010
, “
Modelling Rigid Origami With Quaternions and Dual Quaternions
,”
Proc. R. Soc. A
,
466
(
2119
), pp.
2155
2174
.
21.
Cai
,
J.
,
Zhang
,
Y.
,
Xu
,
Y.
,
Zhou
,
Y.
, and
Feng
,
J.
,
2016
, “
The Foldability of Cylindrical Foldable Structures Based on Rigid Origami
,”
ASME J. Mech. Des.
,
138
(
3
), p.
031401
.
22.
Chen
,
Y.
,
Lv
,
W.
,
Peng
,
R.
, and
Wei
,
G.
,
2019
, “
Mobile Assemblies of Four-Spherical-4R-Integrated Linkages and the Associated Four-Crease-Integrated Rigid Origami Patterns
,”
Mech. Mach. Theory
,
142
, p.
103613
.
23.
Yu
,
H.
,
Guo
,
Z.
, and
Wang
,
J.
,
2018
, “
A Method of Calculating the Degree of Freedom of Foldable Plate Rigid Origami With Adjacency Matrix
,”
Adv. Mech. Eng.
,
10
(
6
), p.
168781401877969
.
24.
Chen
,
Y.
, and
Feng
,
J.
,
2012
, “
Folding of a Type of Deployable Origami Structures
,”
Int. J. Struct. Stab. Dyn.
,
12
(
06
), p.
1250054
.
25.
Chen
,
Y.
,
Liang
,
J. B.
,
Shi
,
P.
,
Feng
,
J.
,
Sareh
,
P.
, and
Dai
,
J. S.
,
2023
, “
Inverse Design of Programmable Poisson's Ratio and In-Plane Stiffness for Generalized Four-Fold Origami
,”
Compos. Struct.
,
311
(
9
), p.
116789
.
26.
Tachi
,
T.
,
2009
, “
Simulation of Rigid Origami
,”
Origami
,
4
(
8
), pp.
175
187
.
27.
Zimmermann
,
L.
,
Shea
,
K.
, and
Stanković
,
T.
,
2022
, “
A Computational Design Synthesis Method for the Generation of Rigid Origami Crease Patterns
,”
ASME J. Mech. Rob.
,
14
(
3
), p.
031014
.
28.
Ye
,
Q.
,
Gu
,
X. D.
, and
Chen
,
S.
,
2022
, “
Variational Level Set Method for Topology Optimization of Origami Fold Patterns
,”
ASME J. Mech. Des.
,
144
(
8
), p.
081702
.
29.
Abel
,
Z.
,
Cantarella
,
J.
,
Demaine
,
E.
,
Eppstein
,
D.
,
Hull
,
T.
,
Ku
,
J.
,
Lang
,
R.
, and
Tachi
,
T.
,
2015
, “
Rigid Origami Vertices: Conditions and Forcing Sets
,”
J. Comput. Geom.
,
7
(
1
), pp.
171
184
.
30.
Feng
,
H.
,
Peng
,
R.
,
Ma
,
J.
, and
Chen
,
Y.
,
2018
, “
Rigid Foldability of Generalized Triangle Twist Origami Pattern and Its Derived 6R Linkages
,”
ASME J. Mech. Rob.
,
10
(
5
), p.
051003
.
31.
He
,
Z.
, and
Guest
,
S. D.
,
2020
, “
On Rigid Origami II: Quadrilateral Creased Papers
,”
Proc. R. Soc. A
,
476
(
2237
), p.
20200020
.
32.
Hull
,
T.
,
2002
, “
A Mathematical Model for Non-Flat Origami
,”
Origami 3: Proceedings of the 3rd International Meeting of Origami Mathematics, Science, and Education
,
Asilomar, CA
,
2001
, pp.
39
51
.
33.
Xiong
,
Y. L.
,
Li
,
W. L.
, and
Chen
,
W. B.
,
2018
,
Robotics: Modeling, Control and Vision
,
Huazhong University of Science and Technology Press
,
Wuhan, China
.
34.
Merlet
,
J. P.
,
1989
, “
Singular Configurations of Parallel Manipulators and Grassmann Geometry
,”
Int. J. Rob. Res.
,
8
(
5
), pp.
45
56
.
35.
Wang
,
K.
, and
Chen
,
Y.
,
2011
, “
Folding a Patterned Cylinder by Rigid Origami
,”
Origami 5: Proceedings of the 5th International Meeting of Origami Mathematics, Science, and Education
,
Singapore Management University
,
2010
.
36.
Evans
,
T. A.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2015
, “
Rigidly Foldable Origami Gadgets and Tessellations
,”
R. Soc. Open Sci.
,
2
(
9
), p.
150067
.
37.
Cai
,
J.
,
Qian
,
Z.
,
Jiang
,
C.
,
Feng
,
J.
, and
Xu
,
Y.
,
2016
, “
Mobility and Kinematic Analysis of Foldable Plate Structures Based on Rigid Origami
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
064502
.
38.
He
,
Z.
, and
Guest
,
S. D.
,
2019
, “
On Rigid Origami I: Piecewise-Planar Paper With Straight-Line Creases
,”
Proc. R. Soc. A
,
475
(
2232
), p.
20190215
.
39.
Wei
,
G.
, and
Dai
,
J. S.
,
2014
, “
Origami-Inspired Integrated Planar-Spherical Overconstrained Mechanisms
,”
ASME J. Mech. Des.
,
136
(
5
), p.
051003
.
40.
Demaine
,
E. D.
, and
O’Rourke
,
J.
,
2007
,
Geometric Folding Algorithms: Linkages, Origami, Polyhedral
,
Cambridge University Press
,
New York
.
41.
Murray
,
R.
,
Li
,
Z.
, and
Sastry
,
S.
,
2017
,
A Mathematical Introduction to Robot Manipulation
,
CRC Press
,
Boca Raton, FL
.
42.
Tachi
,
T.
,
2009
, “
Generalization of Rigid Foldable Quadrilateral Mesh Origami
,”
J. Int. Assoc. Shell Spat. Struct.
,
50
(
3
), pp.
173
179
.
43.
Tachi
,
T.
,
2010
, “
Geometric Considerations for the Design of Rigid Origami Structures
,”
Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium
,
Shanghai, China
,
Nov. 8–12
, pp.
458
460
.
You do not currently have access to this content.