Abstract

This paper proposes a compact and reconfigurable variable stiffness actuator (VSA) using disc spring which is named as SDS-VSA (symmetrical disc spring variable stiffness actuator). To enhance the actuator’s torque density, symmetric compression springs are integrated into the cam-roller-spring mechanism, and a disc spring combination design is employed instead of conventional springs. The disc spring configuration is tailored to achieve a broader stiffness range within a limited size, aligned with stiffness and dimensional requirements. Subsequently, the dynamics of the cam-roller-spring mechanism are derived. To tackle the challenge of strong coupling dynamics, a decoupled modeling method by introducing mismatched and matched disturbances is proposed. A back-stepping tracking controller and proportional-derivative (PD) controller with feedforward are proposed to track the link-side and stiffness motor-side trajectories, respectively. Tracking experiments under significant stiffness alteration are conduced to verify the performance of the prototype SDS-VSA.

References

1.
Vanderborght
,
B.
,
Albu-Schaeffer
,
A.
,
Bicchi
,
A.
,
Burdet
,
E.
,
Caldwell
,
D. G.
,
Carloni
,
R.
,
Catalano
,
M.
, et al.,
2013
, “
Variable Impedance Actuators: A Review
,”
Rob. Auton. Syst.
,
61
(
12
), pp.
1601
1614
.
2.
Grebenstein
,
M.
,
Chalon
,
M.
,
Friedl
,
W.
,
Haddadin
,
S.
,
Wimböck
,
T.
,
Hirzinger
,
G.
, and
Siegwart
,
R.
,
2012
, “
The Hand of the DLR Hand Arm System: Designed for Interaction
,”
Int. J. Rob. Res.
,
31
(
13
), pp.
1531
1555
.
3.
Kakogawa
,
A.
,
Kawabata
,
T.
, and
Ma
,
S.
,
2021
, “
Plate-Springed Parallel Elastic Actuator for Efficient Snake Robot Movement
,”
IEEE/ASME Trans. Mechatron.
,
26
(
6
), pp.
3051
3063
.
4.
Baggetta
,
M.
,
Berselli
,
G.
,
Palli
,
G.
, and
Melchiorri
,
C.
,
2022
, “
Design, Modeling, and Control of a Variable Stiffness Elbow Joint
,”
Int. J. Adv. Manuf. Technol.
,
122
(
11
), pp.
4437
4451
.
5.
Mathews
,
C. W.
, and
Braun
,
D. J.
,
2023
, “
Design of Parallel Variable Stiffness Actuators
,”
IEEE Trans. Rob.
,
39
(
1
), pp.
768
782
.
6.
Hu
,
H.
,
Xie
,
Z.
,
Liu
,
Y.
,
Liu
,
Y.
,
Yang
,
G.
,
Xia
,
J.
, and
Liu
,
H.
,
2023
, “
A Variable Stiffness Actuation Based Robotic Hand Designed for Interactions
,”
IEEE/ASME Trans. Mechatron.
, pp.
1
11
.
7.
Qu
,
X.
,
Cao
,
D.
,
Qu
,
R.
,
Zhang
,
G.
, and
Zhang
,
S.
,
2022
, “
A Novel Design of Torsion Spring-Connected Nonlinear Stiffness Actuator Based on Cam Mechanism
,”
ASME J. Mech. Des.
,
144
(
8
), p.
083303
.
8.
Shao
,
Y.
,
Zhang
,
W.
, and
Ding
,
X.
,
2021
, “
Configuration Synthesis of Variable Stiffness Mechanisms Based on Guide-Bar Mechanisms With Length-Adjustable Links
,”
Mech. Mach. Theory
,
156
, p.
104153
.
9.
Ning
,
Y.
,
Huang
,
H.
,
Xu
,
W.
,
Zhang
,
W.
, and
Li
,
B.
,
2021
, “
Design and Implementation of a Novel Variable Stiffness Actuator With Cam-Based Relocation Mechanism
,”
ASME J. Mech. Rob.
,
13
(
2
), p.
021009
.
10.
Wolf
,
S.
, and
Hirzinger
,
G.
,
2008
, “
A New Variable Stiffness Design: Matching Requirements of the Next Robot Generation
,”
2008 IEEE International Conference on Robotics and Automation
,
Pasadena, CA
,
May 19–23
,
IEEE
, pp.
1741
1746
.
11.
Wolf
,
S.
,
Eiberger
,
O.
, and
Hirzinger
,
G.
,
2011
, “
The DLR FSJ: Energy Based Design of a Variable Stiffness Joint
,”
2011 IEEE International Conference on Robotics and Automation
,
Shanghai, China
,
May 19–23
,
IEEE
, pp.
5082
5089
.
12.
Wang
,
C.
,
Sheng
,
B.
,
Li
,
Z.
,
Sivan
,
M.
,
Zhang
,
Z. Q.
,
Li
,
G. Q.
, and
Xie
,
S. Q.
,
2023
, “
A Lightweight Series Elastic Actuator With Variable Stiffness: Design, Modeling, and Evaluation
,”
IEEE/ASME Trans. Mechatron.
, pp.
1
10
.
13.
Jafari
,
A.
,
Tsagarakis
,
N. G.
, and
Caldwell
,
D. G.
,
2013
, “
A Novel Intrinsically Energy Efficient Actuator With Adjustable Stiffness (AWAS)
,”
IEEE/ASME Trans. Mechatron.
,
18
(
1
), pp.
355
365
.
14.
Jafari
,
A.
,
Tsagarakis
,
N. G.
, and
Caldwell
,
D. G.
,
2011
, “
AWAS-II: A New Actuator With Adjustable Stiffness Based on the Novel Principle of Adaptable Pivot Point and Variable Lever Ratio
,”
2011 IEEE International Conference on Robotics and Automation
,
Shanghai, China
,
May 19–23
,
IEEE
, pp.
4638
4643
.
15.
Tsagarakis
,
N. G.
,
Sardellitti
,
I.
, and
Caldwell
,
D. G.
,
2011
, “
A New Variable Stiffness Actuator (CompAct-VSA): Design and Modelling
,”
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Francisco, CA
,
Sept. 25–30
,
IEEE
, pp.
378
383
.
16.
Yang
,
Y.
,
Lu
,
Y.
,
Zhang
,
R.
, and
Yue
,
H.
,
2023
, “
RJVS: A Novel, Compact and Integrated Rotating Joint With Variable Stiffness
,”
Mech. Syst. Signal Process.
,
193
, p.
110273
.
17.
Wang
,
W.
,
Fu
,
X.
,
Li
,
Y.
, and
Yun
,
C.
,
2018
, “
Design and Implementation of a Variable Stiffness Actuator Based on Flexible Gear Rack Mechanism
,”
Robotica
,
36
(
3
), pp.
448
462
.
18.
Wolf
,
S.
,
Grioli
,
G.
,
Eiberger
,
O.
,
Friedl
,
W.
,
Grebenstein
,
M.
,
Hoppner
,
H.
,
Burdet
,
E.
, et al.,
2016
, “
Variable Stiffness Actuators: Review on Design and Components
,”
IEEE/ASME Trans. Mechatron.
,
21
(
5
), pp.
2418
2430
.
19.
Baček
,
T.
,
Moltedo
,
M.
,
Geeroms
,
J.
,
Vanderborght
,
B.
,
Rodriguez-Guerrero
,
C.
, and
Lefeber
,
D.
,
2020
, “
Varying Mechanical Compliance Benefits Energy Efficiency of a Knee Joint Actuator
,”
Mechatronics
,
66
, p.
102318
.
20.
Zhu
,
Y.
,
Wu
,
Q.
,
Chen
,
B.
,
Xu
,
D.
, and
Shao
,
Z.
,
2022
, “
Design and Evaluation of a Novel Torque-Controllable Variable Stiffness Actuator With Reconfigurability
,”
IEEE/ASME Trans. Mechatron.
,
27
(
1
), pp.
292
303
.
21.
Wu
,
J.
,
Wang
,
Z.
,
Chen
,
W.
,
Wang
,
Y.
, and
Liu
,
Y. H.
,
2020
, “
Design and Validation of a Novel Leaf Spring-Based Variable Stiffness Joint With Reconfigurability
,”
IEEE/ASME Trans. Mechatron.
,
25
(
4
), pp.
2045
2053
.
22.
Xu
,
Y.
,
Guo
,
K.
,
Li
,
J.
, and
Li
,
Y.
,
2021
, “
A Novel Rotational Actuator With Variable Stiffness Using S-Shaped Springs
,”
IEEE/ASME Trans. Mechatron.
,
26
(
4
), pp.
2249
2260
.
23.
Sariyildiz
,
E.
,
Mutlu
,
R.
,
Roberts
,
J.
,
Kuo
,
C. H.
, and
Ugurlu
,
B.
,
2023
, “
Design and Control of a Novel Variable Stiffness Series Elastic Actuator
,”
IEEE/ASME Trans. Mechatron.
, pp.
1
12
.
24.
Xu
,
Y.
,
Guo
,
K.
,
Sun
,
J.
, and
Li
,
J.
,
2021
, “
Design and Analysis of a Linear Digital Variable Stiffness Actuator
,”
IEEE Access
,
9
, pp.
13992
14004
.
25.
Sun
,
J.
,
Guo
,
Z.
,
Zhang
,
Y.
,
Xiao
,
X.
, and
Tan
,
J.
,
2018
, “
A Novel Design of Serial Variable Stiffness Actuator Based on an Archimedean Spiral Relocation Mechanism
,”
IEEE/ASME Trans. Mechatron.
,
23
(
5
), pp.
2121
2131
.
26.
Petit
,
F.
,
Daasch
,
A.
, and
Albu-Schäffer
,
A.
,
2015
, “
Backstepping Control of Variable Stiffness Robots
,”
IEEE Trans. Control Syst. Technol.
,
23
(
6
), pp.
2195
2202
.
You do not currently have access to this content.