Abstract

This paper presents a multi-objective optimal design method for gravity compensators with consideration of minimizing the joint reaction forces. High performance of the gravity compensation is achieved while the joint reaction forces are kept to a minimum. In this method, the ratio of the compensated torque to the uncompensated torque and the maximum value of the joint reaction forces are formulated as cost functions in the optimization problem, which is solved by adopting the Pareto front of multiple fitness functions with a genetic algorithm. This work takes a spring four-bar mechanism as a gravity compensator for a case study. The theoretical models of a gravity compensator and a robot manipulator show that the proposed multi-objective optimal design allows for the achievement of smaller joint reaction forces than the original single-objective optimal design, while their gravity compensation performances are relatively the same. Moreover, a prototype of a 0.2-kg gravity compensator realized from the proposed method was also built. An experimental study with this prototype showed that the measured motor torque was reduced by up to 93% within a range of 3π/4.

References

1.
Arakelian
,
V.
,
2016
, “
Gravity Compensation in Robotics
,”
Adv. Rob.
,
30
(
2
), pp.
79
96
.
2.
Herder
,
J. L.
,
2001
, “
Energy-Free Systems: Theory, Conception and Design of Statically Balanced Spring Mechanisms
,”
PhD thesis
,
Delft University of Technology
,
Delft, The Netherlands
.
3.
Nguyen
,
V. L.
,
2022
, “
Realization of a Gear-Spring Balancer With Variable Payloads and Its Application to Serial Robots
,”
ASME J. Mech. Rob.
,
15
(
4
), p.
041013
.
4.
Carricato
,
M.
, and
Gosselin
,
C.
,
2009
, “
A Statically Balanced Gough/Stewart-Type Platform: Conception, Design, and Simulation
,”
ASME J. Mech. Rob.
,
1
(
3
), p.
031005
.
5.
Tseng
,
T.-Y.
,
Lin
,
Y.-J.
,
Hsu
,
W.-C.
,
Lin
,
L.-F.
, and
Kuo
,
C.-H.
,
2017
, “
A Novel Reconfigurable Gravity Balancer for Lower-Limb Rehabilitation With Switchable Hip/Knee-Only Exercise
,”
ASME J. Mech. Rob.
,
9
(
4
), p.
041002
.
6.
Wang
,
J.
, and
Gosselin
,
C. M.
,
2000
, “
Static Balancing of Spatial Four-Degree-of-Freedom Parallel Mechanisms
,”
Mech. Mach. Theory
,
35
(
4
), pp.
563
592
.
7.
Eckenstein
,
N.
, and
Yim
,
M.
,
2013
, “
Modular Advantage and Kinematic Decoupling in Gravity Compensated Robotic Systems
,”
ASME J. Mech. Rob.
,
5
(
4
), p.
041013
.
8.
Zhou
,
L.
,
Chen
,
W.
,
Chen
,
W.
,
Bai
,
S.
,
Zhang
,
J.
, and
Wang
,
J.
,
2020
, “
Design of a Passive Lower Limb Exoskeleton for Walking Assistance With Gravity Compensation
,”
Mech. Mach. Theory
,
150
, p.
103840
.
9.
Kuo
,
C.-H.
,
Nguyen-Vu
,
L.
, and
Chou
,
L.-T.
,
2018
, “
Static Balancing of a Reconfigurable Linkage With Switchable Mobility by Using a Single Counterweight
,”
Proceedings of the IEEE International Conference on Reconfigurable Mechanisms and Robots (ReMAR)
,
Delft, Netherlands
,
June 20–22
, pp.
1
6
.
10.
Peng
,
Y.
, and
Bu
,
W.
,
2022
, “
Design of Gravity-Balanced Exoskeletons With Linkage-Belt Hybrid Transmissions
,”
Mech. Mach. Theory
,
170
, p.
104660
.
11.
Peng
,
Y.
,
Bu
,
W.
, and
Chen
,
J.
,
2022
, “
Design of the Wearable Spatial Gravity Balance Mechanism
,”
ASME J. Mech. Rob.
,
14
(
3
), p.
031006
.
12.
Lee
,
W.-B.
,
Lee
,
S.-D.
, and
Song
,
J.-B.
,
2017
, “
Design of a 6-DOF Collaborative Robot Arm With Counterbalance Mechanisms
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
,
May 29–June 3
, pp.
3696
3701
.
13.
Kim
,
H.-S.
,
Min
,
J.-K.
, and
Song
,
J.-B.
,
2016
, “
Multiple-Degree-of-Freedom Counterbalance Robot Arm Based on Slider-Crank Mechanism and Bevel Gear Units
,”
IEEE Trans. Robot.
,
32
(
1
), pp.
230
235
.
14.
Nguyen
,
V. L.
,
Kuo
,
C.-H.
, and
Lin
,
P. T.
,
2024
, “
Performance Analysis of Gravity-Balanced Serial Robotic Manipulators Under Dynamic Loads
,”
Mech. Mach. Theory
,
191
, p.
105519
.
15.
Nguyen
,
V. L.
,
2021
, “
Gravity Balancing Design of a 3-DOF Hybrid Robotic Manipulator With Variable Payloads
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition
,
Virtual, Online
,
Nov. 1–5
, p. 69857, Paper No. IMECE2021-69857.
16.
Kuo
,
C.-H.
, and
Lai
,
S.-J.
,
2016
, “
Design of a Novel Statically Balanced Mechanism for Laparoscope Holders With Decoupled Positioning and Orientating Manipulation
,”
ASME J. Mech. Rob.
,
8
(
1
), p.
015001
.
17.
Kim
,
C.-K.
,
Chung
,
D. G.
,
Hwang
,
M.
,
Cheon
,
B.
,
Kim
,
H.
,
Kim
,
J.
, and
Kwon
,
D.-S.
,
2019
, “
Three-Degrees-of-Freedom Passive Gravity Compensation Mechanism Applicable to Robotic Arm With Remote Center of Motion for Minimally Invasive Surgery
,”
IEEE Rob. Autom. Lett.
,
4
(
4
), pp.
3473
3480
.
18.
Vazzoler
,
G.
,
Bilancia
,
P.
,
Berselli
,
G.
,
Fontana
,
M.
, and
Frisoli
,
A.
,
2022
, “
Analysis and Preliminary Design of a Passive Upper Limb Exoskeleton
,”
IEEE Trans. Med. Rob. Bionics
,
4
(
3
), pp.
558
569
.
19.
Tschiersky
,
M.
,
Hekman
,
E. E.
,
Brouwer
,
D. M.
, and
Herder
,
J. L.
,
2019
, “
Gravity Balancing Flexure Springs for an Assistive Elbow Orthosis
,”
IEEE Trans. Med. Robot. Bionics
,
1
(
3
), pp.
177
188
.
20.
Alamdari
,
A.
,
Haghighi
,
R.
, and
Krovi
,
V.
,
2019
, “
Gravity-Balancing of Elastic Articulated-Cable Leg-Orthosis Emulator
,”
Mech. Mach. Theory
,
131
, pp.
351
370
.
21.
Hull
,
J.
,
Turner
,
R.
, and
Asbeck
,
A. T.
,
2022
, “
Design and Preliminary Evaluation of Two Tool Support Arm Exoskeletons With Gravity Compensation
,”
Mech. Mach. Theory
,
172
, p.
104802
.
22.
van der Wijk
,
V.
,
2020
, “
The Grand 4R Four-Bar Based Inherently Balanced Linkage Architecture for Synthesis of Shaking Force Balanced and Gravity Force Balanced Mechanisms
,”
Mech. Mach. Theory
,
150
, p.
103815
.
23.
Kuo
,
C.-H.
,
Nguyen
,
V. L.
,
Robertson
,
D.
,
Chou
,
L.-T.
, and
Herder
,
J. L.
,
2021
, “
Statically Balancing a Reconfigurable Mechanism by Using One Passive Energy Element Only: a Case Study
,”
ASME J. Mech. Rob.
,
13
(
4
), p.
040904
.
24.
Audet
,
J. M.
, and
Gosselin
,
C.
,
2022
, “
Intuitive Physical Human-Robot Interaction Using an Underactuated Redundant Manipulator With Complete Spatial Rotational Capabilities
,”
ASME J. Mech. Rob.
,
14
(
1
), p.
011011
.
25.
Audet
,
J. M.
, and
Gosselin
,
C.
,
2021
, “
Rotational Low-Impedance Physical Human–Robot Interaction Using Underactuated Redundancy
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
014503
.
26.
Wang
,
J.
, and
Gosselin
,
C. M.
,
1999
, “
Static Balancing of Spatial Three-Degree-of-Freedom Parallel Mechanisms
,”
Mech. Mach. Theory
,
34
(
3
), pp.
437
452
.
27.
Nguyen
,
V. L.
,
Lin
,
C.-Y.
, and
Kuo
,
C.-H.
,
2020
, “
Gravity Compensation Design of Delta Parallel Robots Using Gear-Spring Modules
,”
Mech. Mach. Theory
,
154
, p.
104046
.
28.
Nguyen
,
V. L.
,
Kuo
,
C.-H.
, and
Lin
,
P. T.
,
2022
, “
Reliability-Based Analysis and Optimization of the Gravity Balancing Performance of Spring-Articulated Serial Robots With Uncertainties
,”
ASME J. Mech. Rob.
,
14
(
3
), p.
031016
.
29.
Nguyen
,
V. L.
,
Lin
,
C.-Y.
, and
Kuo
,
C.-H.
,
2020
, “
Gravity Compensation Design of Planar Articulated Robotic Arms Using the Gear-Spring Modules
,”
ASME J. Mech. Rob.
,
12
(
3
), p.
031014
.
30.
Juang
,
C.-W.
, and
Chen
,
D.-Z.
,
2022
, “
Spring Configurations and Attachment Angles Determination for Statically Balanced Planar Articulated Manipulators
,”
ASME J. Mech. Rob.
,
14
(
5
), p.
054502
.
31.
Nguyen
,
V. L.
,
2023
, “
Gravity Balancing of a Two-Degree-of-Freedom Parallel Robotic Platform With Variable Payloads
,”
ASME J. Mech. Des.
,
145
(
2
), p.
024501
.
32.
Jhuang
,
C.-S.
,
Juang
,
C.-W.
, and
Chen
,
D.-Z.
,
2024
, “
Force Analysis of Statically Balanced Serially Connected Manipulators Using Springs Based on Torque Compatibilities Associated With Accumulative Joint Angles
,”
ASME J. Mech. Rob.
,
16
(
3
), p.
031006
.
33.
Kim
,
B.
, and
Deshpande
,
A. D.
,
2014
, “
Design of Nonlinear Rotational Stiffness Using a Noncircular Pulley-Spring Mechanism
,”
ASME J. Mech. Rob.
,
6
(
4
), p.
041009
.
34.
Lee
,
D.
, and
Seo
,
T.
,
2017
, “
Lightweight Multi-DOF Manipulator With Wire-Driven Gravity Compensation Mechanism
,”
IEEE/ASME Trans. Mechatron.
,
22
(
3
), pp.
1308
1314
.
35.
Nguyen
,
V. L.
,
2022
, “
Design of a Compact Gear-Spring Mechanism for Static Balancing of Variable Payloads
,”
ASME J. Mech. Des.
,
144
(
12
), p.
123301
.
36.
Koser
,
K.
,
2009
, “
A Cam Mechanism for Gravity-Balancing
,”
Mech. Res. Commun.
,
36
(
4
), pp.
523
530
.
37.
Ulrich
,
N.
, and
Kumar
,
V.
,
1991
, “
Passive Mechanical Gravity Compensation for Robot Manipulators
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
,
Sacramento, CA
,
Apr. 9–11
, pp.
1536
1541
.
38.
Fedorov
,
D.
, and
Birglen
,
L.
,
2018
, “
Differential Noncircular Pulleys for Cable Robots and Static Balancing
,”
ASME J. Mech. Rob.
,
10
(
6
), p.
061001
.
39.
Arakelian
,
V.
, and
Zhang
,
Y.
,
2019
, “
An Improved Design of Gravity Compensators Based on the Inverted Slider-Crank Mechanism
,”
ASME J. Mech. Rob.
,
11
(
3
), p.
034501
.
40.
Linh
,
N. V.
, and
Kuo
,
C.-H.
,
2019
, “
A Gear-Slider Gravity Compensation Mechanism: Design and Experimental Study
,”
Proceedings of the ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC-CIE)
,
Anaheim, CA
,
Aug. 18–21
, Paper No. IDETC2019-97602.
41.
Bijlsma
,
B. G.
,
Radaelli
,
G.
, and
Herder
,
J. L.
,
2017
, “
Design of a Compact Gravity Equilibrator With an Unlimited Range of Motion
,”
ASME J. Mech. Rob.
,
9
(
6
), p.
061003
.
42.
Kuo
,
C.-H.
, and
Wu
,
Y.-X.
,
2023
, “
Perfect Static Balancing Using Cardan-Gear Spring Mechanisms
,”
Mech. Mach. Theory
,
181
, p.
105229
.
43.
Kim
,
J.
,
Moon
,
J.
,
Ryu
,
J.
,
Kim
,
S.
,
Yoon
,
J.
, and
Lee
,
G.
,
2022
, “
A Novel Energy-Efficient Actuator Integrated With Compact Variable Gravity Compensation Module
,”
Mech. Mach. Theory
,
177
, p.
105031
.
44.
Šalinić
,
S.
,
2011
, “
Determination of Joint Reaction Forces in a Symbolic Form in Rigid Multibody Systems
,”
Mech. Mach. Theory
,
46
(
11
), pp.
1796
1810
.
45.
Wojtyra
,
M.
,
2009
, “
Joint Reactions in Rigid Body Mechanisms With Dependent Constraints
,”
Mech. Mach. Theory
,
44
(
12
), pp.
2265
2278
.
46.
Cao
,
W.-A.
, and
Ding
,
H.
,
2018
, “
A Method for Solving All Joint Reactions of 3R2T Parallel Mechanisms With Complicated Structures and Multiple Redundant Constraints
,”
Mech. Mach. Theory
,
121
, pp.
718
730
.
47.
Frączek
,
J.
, and
Wojtyra
,
M.
,
2011
, “
On the Unique Solvability of a Direct Dynamics Problem for Mechanisms With Redundant Constraints and Coulomb Friction in Joints
,”
Mech. Mach. Theory
,
46
(
3
), pp.
312
334
.
48.
Cammarata
,
A.
,
2017
, “
A Novel Method to Determine Position and Orientation Errors in Clearance-Affected Overconstrained Mechanisms
,”
Mech. Mach. Theory
,
118
, pp.
247
264
.
49.
Perera
,
O.
, and
Seering
,
W.
,
1983
, “
Prevention of Impact in Bearings of Four-Bar Linkages
,”
ASME J. Mech. Transm. Autom. Des.
,
105
(
3
), pp.
592
598
.
50.
Xu
,
L.-X.
,
2014
, “
A General Method for Impact Dynamic Analysis of a Planar Multi-Body System With a Rolling Ball Bearing Joint
,”
Nonlinear Dyn.
,
78
(
2
), pp.
857
879
.
51.
Flores
,
P.
,
2009
, “
Modeling and Simulation of Wear in Revolute Clearance Joints in Multibody Systems
,”
Mech. Mach. Theory
,
44
(
6
), pp.
1211
1222
.
52.
Kövecses
,
J.
,
1997
, “
Joint Motion Dynamics and Reaction Forces in Flexible-Link Robotic Mechanisms
,”
Mech. Mach. Theory
,
32
(
7
), pp.
869
880
.
53.
Pękal
,
M.
,
Wojtyra
,
M.
, and
Frączek
,
J.
,
2019
, “
Free-Body-Diagram Method for the Uniqueness Analysis of Reactions and Driving Forces in Redundantly Constrained Multibody Systems With Nonholonomic Constraints
,”
Mech. Mach. Theory
,
133
, pp.
329
346
.
54.
Nguyen
,
V. L.
,
2022
, “
A Design Approach for Gravity Compensators Using Planar Four-Bar Mechanisms and a Linear Spring
,”
Mech. Mach. Theory
,
172
, p.
104770
.
55.
Giagkiozis
,
I.
, and
Fleming
,
P. J.
,
2015
, “
Methods for Multi-Objective Optimization: An Analysis
,”
Inf. Sci.
,
293
, pp.
338
350
.
56.
Khorram
,
E.
,
Khaledian
,
K.
, and
Khaledyan
,
M.
,
2014
, “
A Numerical Method for Constructing the Pareto Front of Multi-Objective Optimization Problems
,”
J. Comput. Appl. Math.
,
261
, pp.
158
171
.
57.
Poulos
,
P.
,
Rigatos
,
G.
,
Tzafestas
,
S.
, and
Koukos
,
A.
,
2001
, “
A Pareto-Optimal Genetic Algorithm for Warehouse Multi-Objective Optimization
,”
Eng. Appl. Artif. Intell.
,
14
(
6
), pp.
737
749
.
58.
Budynas
,
R. G.
, and
Nisbett
,
J. K.
,
2011
,
Shigley’s Mechanical Engineering Design
, 9th ed.,
The McGraw-Hill Companies, Inc.
,
New York
.
59.
GmbH
,
KR.
,
2016
, “
The KR QUANTEC Series, KR 210 R3100
,” KUKA Industrial Robotics_High Payloads, KUKA Deutschland, Augsburg, Germany.
You do not currently have access to this content.