Abstract

Inspired by lizards, a novel mobile platform with revolving linkage legs is proposed. The platform consists of four six-bar bipedal modules, and it is designed for heavy transportation on unstructured terrain. The platform possesses smooth-wheeled locomotion and obstacle-adaptive legged locomotion to enhance maneuverability. The kinematics of the six-bar bipedal modules is analyzed using the vector loop method, subsequently ascertaining the drive scheme. The foot trajectory compensation curve is generated using the fixed-axis rotation contour algorithm, which effectively reduces the centroid fluctuation and enables seamless switching between wheels and legs. When encountering obstacles, the revolving linkage legs act as climbing arms, facilitating seamless integration of wheel, foot, and arm. A physical prototype is developed to test the platform on three typical terrains: flat terrain, slope, and vertical obstacle. The experimental results demonstrated the feasibility of the platform structure. The platform can climb obstacles higher than its own height without adding extra actuation.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Zhang
,
C.
,
Chen
,
G.
,
Li
,
Z.
,
Qiu
,
X.
, and
Guo
,
S.
,
2023
, “
Design and Control of a Foldable and Reconfigurable Multi-Terrain Vehicle With Variable Wheelbase
,”
ASME J. Mech. Rob.
,
15
(
2
), p.
024501
.
2.
Zhao
,
Y.
,
Gao
,
F.
,
Sun
,
Q.
, and
Yin
,
Y. P.
,
2021
, “
Terrain Classification and Adaptive Locomotion for a Hexapod Robot Qingzhui
,”
Front. Mech. Eng.
,
16
(
2
), pp.
271
284
.
3.
Raza
,
F.
,
Zhu
,
W.
, and
Hayashibe
,
M.
,
2021
, “
Balance Stability Augmentation for Wheel-Legged Biped Robot Through Arm Acceleration Control
,”
IEEE Access
,
9
, pp.
54022
54031
.
4.
Tang
,
Z.
,
Wang
,
K.
,
Spyrakos-Papastavridis
,
E. S.
, and
Dai
,
J. S.
,
2022
, “
Origaker: A Novel Multi-Mimicry Quadruped Robot Based on a Metamorphic Mechanism
,”
ASME J. Mech. Rob.
,
14
(
6
), p.
060907
.
5.
Du
,
W. Q.
,
Fnadi
,
M.
, and
Benamar
,
F.
,
2020
, “
Rolling Based Locomotion on Rough Terrain for a Wheeled Quadruped Using Centroidal Dynamics
,”
Mech. Mach. Theory
,
153
, p.
103984
.
6.
Klemm
,
V.
,
Morra
,
A.
,
Gulich
,
L.
,
Mannhart
,
D.
,
Rohr
,
D.
,
Kamel
,
M.
,
de Viragh
,
Y.
, and
Siegwart
,
R.
,
2020
, “
LQR-Assisted Whole-Body Control of a Wheeled Bipedal Robot With Kinematic Loops
,”
IEEE Rob. Autom. Lett.
,
5
(
2
), pp.
3745
3752
.
7.
Zhang
,
C.
,
Liu
,
T. Y.
,
Song
,
S.
,
Wang
,
J. L.
, and
Meng
,
M. Q. H.
,
2022
, “
Dynamic Wheeled Motion Control of Wheel-Biped Transformable Robots
,”
Biomim. Intell. Rob.
,
2
(
2
), p.
100027
.
8.
Bjelonic
,
M.
,
Grandia
,
R.
,
Harley
,
O.
,
Galliard
,
L.
,
Zimmermann
,
S.
, and
Hutter
,
M.
,
2021
, “
Whole-Body MPC and Online Gait Sequence Generation for Wheeled-Legged Robots
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Prague, Czech Republic
,
Sept. 27–Oct. 1
, pp.
1
8
.
9.
Guo
,
F.
,
Wang
,
S. K.
,
Yue
,
B. K.
, and
Wang
,
J. Z.
,
2020
, “
A Deformable Configuration Planning Framework for a Parallel Wheel-Legged Robot Equipped With Lidar
,”
Sensors
,
20
(
19
), p.
5614
.
10.
Xu
,
K.
,
Wang
,
S. K.
,
Yue
,
B. K.
,
Wang
,
J. Z.
,
Guo
,
F.
, and
Chen
,
Z. H.
,
2020
, “
Obstacle-Negotiation Performance on Challenging Terrain for a Parallel Leg-Wheeled Robot
,”
J. Mech. Sci. Technol.
,
34
(
1
), pp.
377
386
.
11.
Xu
,
K.
,
Wang
,
S. K.
,
Wang
,
J. Z.
,
Wang
,
X. W.
,
Chen
,
Z. H.
, and
Si
,
J. G.
,
2021
, “
High-Adaption Locomotion With Stable Robot Body for Planetary Exploration Robot Carrying Potential Instruments on Unstructured Terrain
,”
Chin. J. Aeronaut.
,
34
(
5
), pp.
652
665
.
12.
Cordes
,
F.
,
Oekermann
,
C.
,
Babu
,
A.
,
Kuehn
,
D.
,
Stark
,
T.
, and
Kirchner
,
F.
,
2014
, “
An Active Suspension System for a Planetary Rover
,”
The International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS)
,
Montreal, Canada
,
June 1–3
, pp.
17
19
.
13.
Volpe
,
R.
,
Balaram
,
J.
,
Ohm
,
T.
, and
Ivlev
,
R.
,
1997
, “
Rocky 7: A Next Generation Mars Rover Prototype
,”
J. Adv. Rob.
,
11
(
4
), pp.
341
358
.
14.
Wettergreen
,
D.
,
Bualat
,
M.
,
Christian
,
D.
,
Schwehr
,
K.
,
Thomas
,
H.
,
Tucker
,
D.
, and
Zbinden
,
E.
,
1998
, “Operating Nomad During the Atacama Desert Trek,”
Field and Service Robotics
,
A.
Zelinsky
, ed.,
Springer
,
London
.
15.
Stone
,
H. W.
,
1996
, “
Mars Pathfinder Microrover: A Small, Low-Cost, Low-Power Spacecraft
,”
Proceedings of the 1996 AIAA Forum on Advanced Developments in Space Robotics
,
Madison, WI
,
Aug. 1–2
, pp.
1
9
.
16.
Alamdari
,
A.
, and
Krovi
,
V. N.
,
2016
, “
Design of Articulated Leg-Wheel Subsystem by Kinetostatic Optimization
,”
Mech. Mach. Theory
,
100
, pp.
222
234
.
17.
Tavolieri
,
C.
,
Ottaviano
,
E.
,
Ceccarelli
,
M.
, and
Nardelli
,
A.
,
2007
, “
A Design of a New Leg-Wheel Walking Robot
,”
Proceedings of the 15th Mediterranean Conference on Control & Automation
,
Athens, Greece
,
July 27–29
, pp.
1
6
.
18.
Ottaviano
,
E.
,
Grande
,
S.
, and
Ceccarelli
,
M.
,
2010
, “
A Biped Walking Mechanism for a Rickshaw Robot
,”
Mech. Based Des. Struc.
,
38
(
2
), pp.
227
242
.
19.
Li
,
T.
, and
Ceccarelli
,
M.
,
2015
, “
Design and Simulated Characteristics of a New Biped Mechanism
,”
Robotica
,
33
(
7
), pp.
1568
1588
.
20.
Michaud
,
F.
,
Létourneau
,
D.
,
Arsenault
,
M.
,
Bergeron
,
Y.
,
Cadrin
,
R.
,
Gagnon
,
F.
,
Legault
,
M. A.
, et al
,
2003
, “
AZIMUT, a Leg-Track-Wheel Robot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Las Vegas, Nevada
,
Oct. 27–31
, pp.
1
6
.
21.
Chen
,
W. H.
,
Lin
,
H. S.
,
Lin
,
Y. M.
, and
Lin
,
P. C.
,
2017
, “
TurboQuad: A Novel Leg-Wheel Transformable Robot With Smooth and Fast Behavioral Transitions
,”
IEEE Trans. Rob.
,
33
(
5
), pp.
1025
1040
.
22.
Chen
,
S. C.
,
Huang
,
K. J.
,
Chen
,
W. H.
,
Shen
,
S. Y.
,
Li
,
C. H.
, and
Lin
,
P. C.
,
2014
, “
Quattroped: A Leg–Wheel Transformable Robot
,”
IEEE-ASME Trans. Mech.
,
19
(
2
), pp.
730
742
.
23.
Shen
,
S. Y.
,
Li
,
C. H.
,
Cheng
,
C. C.
,
Lu
,
J. C.
,
Wang
,
S. F.
, and
Lin
,
P. C.
,
2009
, “
Design of a Leg-Wheel Hybrid Mobile Platform
,”
The 2009 IEEE/RSJ International Conference on Intelligent Robots & Systems
,
St. Louis, MO
,
Oct. 11–15
, pp.
4682
4687
.
24.
Galloway
,
K. C.
,
Clark
,
J. E.
,
Yim
,
M.
, and
Koditschek
,
D. E.
,
2011
, “
Experimental Investigations Into the Role of Passive Variable Compliant Legs for Dynamic Robotic Locomotion
,”
2011 IEEE International Conference on Robotics and Automation
,
Shanghai, China
,
May 9–13
, pp.
1243
1249
.
25.
Bai
,
L.
,
Guan
,
J.
,
Chen
,
X. H.
,
Hou
,
J. Z.
, and
Duan
,
W. B.
,
2018
, “
An Optional Passive/Active Transformable Wheel-Legged Mobility Concept for Search and Rescue Robots
,”
Rob. Auton. Syst.
,
107
, pp.
145
155
.
26.
Kim
,
Y. S.
,
Jung
,
G. P.
,
Kim
,
H.
,
Cho
,
K. J.
, and
Chu
,
C. N.
,
2014
, “
Wheel Transformer: A Wheel-Leg Hybrid Robot With Passive Transformable Wheels
,”
IEEE Trans. Rob.
,
30
(
6
), pp.
1487
1498
.
27.
Zheng
,
C. Q.
, and
Lee
,
K.
,
2019
, “
WheeLeR: Wheel-Leg Reconfigurable Mechanism With Passive Gears for Mobile Robot Applications
,”
2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, Canada
,
May 20–24
, pp.
9292
9298
.
28.
Hao
,
Y.
,
Tian
,
Y.
,
Wu
,
J.
,
Li
,
Y.
, and
Yao
,
Y.-A.
,
2020
, “
Design and Locomotion Analysis of Two Kinds of Rolling Expandable Mobile Linkages With a Single Degree of Freedom
,”
Front. Mech. Eng.
,
15
(
3
), pp.
365
373
.
29.
Wei
,
C. R.
,
Yao
,
Y. A.
,
Wu
,
J. X.
, and
Liu
,
R.
,
2020
, “
Development and Analysis of a Closed-Chain Wheel-Leg Mobile Platform
,”
Chin. J. Mech. Eng.
,
33
(
80
), pp.
1
13
.
30.
Wu
,
J. X.
,
Yang
,
H.
,
Li
,
R. M.
,
Ruan
,
Q.
,
Yan
,
S. Z.
, and
Yao
,
Y. A.
,
2021
, “
Design and Analysis of a Novel Octopod Platform With a Reconfigurable Trunk
,”
Mech. Mach. Theory
,
156
, pp.
104134
.
31.
Wu
,
J. X.
, and
Yao
,
Y. A.
,
2018
, “
Design and Analysis of a Novel Walking Vehicle Based on Leg Mechanism With Variable Topologies
,”
Mech. Mach. Theory
,
128
, pp.
663
681
.
32.
Xie
,
N. G.
,
Cen
,
Y. W.
,
Wang
,
L.
, and
Li
,
R.
,
2009
, “
Tri-Objective Co-Evolutionary Algorithms and Application of Mechanism Design Based on Bionics of Lizard Behavior
,”
J. Mech. Eng.
,
45
(
5
), pp.
62
69
(in Chinese).
33.
Abdala
,
V.
,
Manzano
,
A. S.
,
Tulli
,
M. J.
, and
Herrel
,
A.
,
2009
, “
The Tendinous Patterns in the Palmar Surface of the Lizard Manus: Functional Consequences for Grasping Ability
,”
Anat. Rec.
,
292
(
6
), pp.
842
853
.
34.
Vanhooydonck
,
B.
,
Van Damme
,
R.
, and
Aerts
,
P.
,
2001
, “
Speed and Stamina Trade-Off in Lacertid Lizards
,”
Evolution
,
55
(
5
), pp.
1040
1048
.
35.
Yang
,
C. X.
,
Ding
,
L.
,
Tang
,
D. W.
,
Gao
,
H. B.
,
Niu
,
L. Z.
,
Lan
,
Q. N.
,
Li
,
C.
, and
Deng
,
Z. Q.
,
2020
, “
Improved Terzaghi-Theory-Based Interaction Modeling of Rotary Robotic Locomotors With Granular Substrates
,”
Mech. Mach. Theory
,
152
, pp.
103901
.
36.
Vidal
,
N.
, and
Hedges
,
S. B.
,
2009
, “
The Molecular Evolutionary Tree of Lizards, Snakes, and Amphisbaenians
,”
C. R. Biol.
,
332
(
2–3
), pp.
129
139
.
37.
Irschick
,
D. J.
, and
Jayne
,
B. C.
,
1999
, “
Comparative Three-Dimensional Kinematics of the Hindlimb for High-Speed Bipedal and Quadrupedal Locomotion of Lizards
,”
J. Exp. Biol.
,
202
(
9
), pp.
1047
1065
.
You do not currently have access to this content.