Abstract

This paper presents the design, optimization, control, and experimental evaluation of a novel compact exoskeleton glove aiming to assist patients with brachial plexus injuries in grasping daily used objects. The finger mechanism is based on a rigid coupling hybrid mechanism concept, which utilizes a serially connected rack-and-pinion mechanism and an offset slider-crank mechanism to couple the motions of different finger joints. The glove dimensions are synthesized based on the natural grasping motion of human hands. To better control the glove and enhance the grasping capabilities, a simulation environment was developed and reinforcement learning techniques were applied. This learning-based control trained an agent to perform different grasp types with appropriate force. The trained agent was then applied in real-world experiments with the developed exoskeleton glove. The results validated the effectiveness of the mechanical design and the real-time self-adjustable control policy, which demonstrated the glove’s functionality and capability to grasp various objects relevant to activities of daily living.

References

1.
Park
,
H. R.
,
Lee
,
G. S.
,
Kim
,
I. S.
, and
Chang
,
J. -C.
,
2017
, “
Brachial Plexus Injury in Adults
,”
The Nerve
,
3
(
1
), pp.
1
11
.
2.
Giuffre
,
J. L.
,
Kakar
,
S.
,
Bishop
,
A. T.
,
Spinner
,
R. J.
, and
Shin
,
A. Y.
,
2010
, “
Current Concepts of the Treatment of Adult Brachial Plexus Injuries
,”
J. Hand Surg.
,
35
(
4
), pp.
678
688
.
3.
Ferguson
,
P. W.
,
Dimapasoc
,
B.
,
Shen
,
Y.
, and
Rosen
,
J.
,
2018
, “
Design of a Hand Exoskeleton for Use With Upper Limb Exoskeletons
,”
2018 International Symposium on Wearable Robotics and Rehabilitation
,
Pisa, Italy
,
Oct. 16–20
, Springer, pp.
276
280
.
4.
Iqbal
,
J.
,
Tsagarakis
,
N.
,
Fiorilla
,
A. E.
, and
Caldwell
,
D.
,
2009
, “
Design Requirements of a Hand Exoskeleton Robotic Device
,”
14th IASTED International Conference on Robotics and Applications (RA)
,
Cambridge, MA
,
Nov. 2–4
, Vol. 64, pp.
44
51
.
5.
Polygerinos
,
P.
,
Wang
,
Z.
,
Galloway
,
K. C.
,
Wood
,
R. J.
, and
Walsh
,
C. J.
,
2015
, “
Soft Robotic Glove for Combined Assistance and At-Home Rehabilitation
,”
Rob. Auton. Syst.
,
73
, pp.
135
143
.
6.
Kudo
,
S.
,
Oshima
,
K.
,
Arizono
,
M.
,
Hayashi
,
Y.
, and
Moromugi
,
S.
,
2014
, “
Electric-Powered Glove for CCI Patients to Extend Their Upper-Extremity Function
,”
2014 IEEE/SICE International Symposium on System Integration
,
Tokyo, Japan
,
Dec. 13–15
, Institute of Electrical and Electronics Engineers Inc., pp.
638
643
.
7.
Yap
,
H. K.
,
Ang
,
B. W.
,
Lim
,
J. H.
,
Goh
,
J. C.
, and
Yeow
,
C. H.
,
2016
, “
A Fabric-Regulated Soft Robotic Glove With User Intent Detection Using EMG and RFID for Hand Assistive Application
,”
2016 IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
,
May 16–21
, Institute of Electrical and Electronics Engineers Inc., pp.
3537
3542
.
8.
Borboni
,
A.
,
Mor
,
M.
, and
Faglia
,
R.
,
2016
, “
Gloreha-Hand Robotic Rehabilitation: Design, Mechanical Model, and Experiments
,”
ASME J. Dyn. Syst., Meas. Contr.
,
138
(
11
), p.
111003
.
9.
Ma
,
Z.
,
Ben-Tzvi
,
P.
, and
Danoff
,
J.
,
2015
, “
Sensing and Force-Feedback Exoskeleton Robotic (SAFER) Glove Mechanism for Hand Rehabilitation
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 2–5
, pp.
1
8
.
10.
Hofmann
,
U. A.
,
Bützer
,
T.
,
Lambercy
,
O.
, and
Gassert
,
R.
,
2018
, “
Design and Evaluation of a Bowden-Cable-Based Remote Actuation System for Wearable Robotics
,”
IEEE Rob. Autom. Lett.
,
3
(
3
), pp.
2101
2108
.
11.
Leonardis
,
D.
,
Barsotti
,
M.
,
Loconsole
,
C.
,
Solazzi
,
M.
,
Troncossi
,
M.
,
Mazzotti
,
C.
,
Castelli
,
V. P.
,
Procopio
,
C.
,
Lamola
,
G.
,
Chisari
,
C.
,
Bergamasco
,
M.
, and
Frisoli
,
A.
,
2015
, “
An EMG-controlled Robotic Hand Exoskeleton for Bilateral Rehabilitation
,”
IEEE Trans. Haptics
,
8
(
2
), pp.
140
151
.
12.
Ho
,
N. S.
,
Tong
,
K. Y.
,
Hu
,
X. L.
,
Fung
,
K. L.
,
Wei
,
X. J.
,
Rong
,
W.
, and
Susanto
,
E. A.
,
2011
, “
An EMG-Driven Exoskeleton Hand Robotic Training Device on Chronic Stroke Subjects: Task Training System for Stroke Rehabilitation
,”
2011 IEEE International Conference on Rehabilitation Robotics
,
Zurich, Switzerland
,
June 29–July 1
.
13.
Xu
,
W.
,
Guo
,
Y.
,
Bravo
,
C.
, and
Ben-Tzvi
,
P.
,
2022
, “
Design, Control, and Experimental Evaluation of a Novel Robotic Glove System for Patients With Brachial Plexus Injuries
,”
IEEE Trans. Rob.
,
39
(
2
), pp.
1637
1652
.
14.
Xu
,
W.
,
Guo
,
Y.
,
Bravo
,
C.
, and
Ben-Tzvi
,
P.
,
2022
, “
Development and Experimental Evaluation of a Novel Portable Haptic Robotic Exoskeleton Glove System for Patients With Brachial Plexus Injuries
,”
2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Kyoto, Japan
,
Oct. 23–27
, IEEE, pp.
11115
11120
.
15.
Tran
,
P.
,
Jeong
,
S.
,
Herrin
,
K. R.
, and
Desai
,
J. P.
,
2021
, “
Hand Exoskeleton Systems, Clinical Rehabilitation Practices, and Future Prospects
,”
IEEE Trans. Med. Rob. Bionics
,
3
(
3
), pp.
606
622
.
16.
Xu
,
W.
,
Liu
,
Y.
, and
Ben-Tzvi
,
P.
,
2022
, “
Development of a Novel Low-Profile Robotic Exoskeleton Glove for Patients With Brachial Plexus Injuries
,”
2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Kyoto, Japan
,
Oct. 23–27
, IEEE, pp.
11121
11126
.
17.
Bekey
,
G. A.
,
Tomovic
,
R.
, and
Zeljkovic
,
I.
,
1990
, “Control Architecture for the Belgrade/USC Hand,”
Dextrous Robot Hands
,
S. T.
Venkataraman
, and
T.
Iberall
, eds.,
Springer
,
New York, NY
, pp.
136
149
.
18.
Ma
,
Z.
,
Ben-Tzvi
,
P.
, and
Danoff
,
J.
,
2016
, “
Hand Rehabilitation Learning System With an Exoskeleton Robotic Glove
,”
IEEE Trans. Neural. Syst. Rehabil. Eng.
,
24
(
12
), pp.
1323
1332
.
19.
Refour
,
E.
,
Sebastian
,
B.
, and
Ben-Tzvi
,
P.
,
2018
, “
Two-Digit Robotic Exoskeleton Glove Mechanism: Design and Integration
,”
ASME J. Mech. Rob.
,
10
(
2
), p.
025002
.
20.
Liu
,
Y.
, and
Ben-Tzvi
,
P.
,
2020
, “
Design, Analysis, and Integration of a New Two-Degree-of-Freedom Articulated Multi-link Robotic Tail Mechanism
,”
ASME J. Mech. Rob.
,
12
(
2
), p.
021101
.
21.
Xu
,
W.
,
Liu
,
Y.
, and
Ben-Tzvi
,
P.
,
2022
, “
Design, Analysis, and Prototyping of a Novel Single Degree-of-Freedom Index Finger Exoskeleton Mechanism
,” International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol.
86281
,
American Society of Mechanical Engineers
, p.
V007T07A047
.
22.
Della Santina
,
C.
,
Bianchi
,
M.
,
Averta
,
G.
,
Ciotti
,
S.
,
Arapi
,
V.
,
Fani
,
S.
,
Battaglia
,
E.
,
Catalano
,
M. G.
,
Santello
,
M.
, and
Bicchi
,
A.
,
2017
, “
Postural Hand Synergies During Environmental Constraint Exploitation
,”
Front. Neurorobot.
,
11
(
August
), pp.
1
14
.
23.
Lin
,
J.
,
Wu
,
Y.
, and
Huang
,
T. S.
,
2000
, “
Modeling the Constraints of Human Hand Motion
,”
Proceedings Workshop on Human Motion
,
Austin, TX
,
Dec. 7–8
, pp.
121
126
.
24.
Ferguson
,
P. W.
,
Shen
,
Y.
, and
Rosen
,
J.
,
2020
, “Hand Exoskeleton Systems-Overview,”
Wearable Robotics
,
J.
Rosen
, and
P. W.
Ferguson
, eds.,
Academic Press
,
Cambridge, MA
, pp.
149
175
.
25.
Park
,
J.
,
Pažin
,
N.
,
Friedman
,
J.
,
Zatsiorsky
,
V. M.
, and
Latash
,
M. L.
,
2014
, “
Mechanical Properties of the Human Hand Digits: Age-Related Differences
,”
Clin. Biomechan.
,
29
(
2
), pp.
129
137
.
26.
Di Febbo
,
D.
,
Ambrosini
,
E.
,
Pirotta
,
M.
,
Rojas
,
E.
,
Restelli
,
M.
,
Pedrocchi
,
A. L.
, and
Ferrante
,
S.
,
2018
, “
Does Reinforcement Learning Outperform PID in the Control of FES-Induced Elbow Flex-Extension
,”
2018 IEEE International Symposium on Medical Measurements and Applications (MeMeA)
,
Rome, Italy
,
June 11–13
, IEEE, pp.
1
6
.
27.
Schulman
,
J.
,
Wolski
,
F.
,
Dhariwal
,
P.
,
Radford
,
A.
, and
Klimov
,
O.
,
2017
, “
Proximal Policy Optimization Algorithms
,” arXiv preprint arXiv:1707.06347.
28.
Lillicrap
,
T. P.
,
Hunt
,
J. J.
,
Pritzel
,
A.
,
Heess
,
N.
,
Erez
,
T.
,
Tassa
,
Y.
,
Silver
,
D.
, and
Wierstra
,
D.
,
2015
, “
Continuous Control With Deep Reinforcement Learning
,” arXiv preprint arXiv:1509.02971.
You do not currently have access to this content.