Abstract

This paper studies the statistical concept of confidence region for a set of uncertain planar displacements with a certain level of confidence or probabilities. Three different representations of planar displacements are compared in this context and it is shown that the most commonly used representation based on the coordinates of the moving frame is the least effective. The other two methods, namely the exponential coordinates and planar quaternions, are equally effective in capturing the group structure of SE(2). However, the former relies on the exponential map to parameterize an element of SE(2), while the latter uses a quadratic map, which is often more advantageous computationally. This paper focus on the use of planar quaternions to develop a method for computing the confidence region for a given set of uncertain planar displacements. Principal component analysis (PCA) is another tool used in our study to capture the dominant direction of movements. To demonstrate the effectiveness of our approach, we compare it to an existing method called rotational and translational confidence limit (RTCL). Our examples show that the planar quaternion formulation leads to a swept volume that is more compact and more effective than the RTCL method, especially in cases when off-axis rotation is present.

References

1.
Bailey
,
T.
, and
Durrant-Whyte
,
H.
,
2006
, “
Simultaneous Localization and Mapping (SLAM): Part Ii
,”
IEEE Rob. Auto. Magaz.
,
13
(
3
), pp.
108
117
.
2.
Long
,
A. W.
,
Wolfe
,
K. C.
,
Mashner
,
M. J.
, and
Chirikjian
,
G. S.
,
2013
, “The Banana Distribution is Gaussian: A Localization Study With Exponential Coordinates,”
Robotics – Science and Systems
, Vol.
VIII
,
N.
Roy
,
P.
Newman
, and
S.
Srinivasa
, eds.,
MIT Press
,
Cambridge, MA
, pp.
265
272
.
3.
Stroom
,
J. C.
, and
Heijmen
,
B. J.
,
2002
, “
Geometrical Uncertainties, Radiotherapy Planning Margins, and the ICRU-62 Report
,”
Radio. Oncol.
,
64
(
1
), pp.
75
83
.
4.
Langer
,
M. P.
,
Papiez
,
L.
,
Spirydovich
,
S.
, and
Thai
,
V.
,
2005
, “
The Need for Rotational Margins in Intensity-Modulated Radiotherapy and a New Method for Planning Target Volume Design
,”
Inter. J. Radiat. Oncology, Biology Phys.
,
63
(
5
), pp.
1592
1603
.
5.
Remeijer
,
P.
,
Rasch
,
C.
,
Lebesque
,
J. V.
, and
van Herk
,
M.
,
2002
, “
Margins for Translational and Rotational Uncertainties: A Probability-Based Approach
,”
Int. J. Radiat. Oncol Biol. Phys.
,
53
(
2
), pp.
464
474
.
6.
Selig
,
J. M.
,
2004
, “Lie Groups and Lie Algebras in Robotics,”
Computational Noncommutative Algebra and Applications
,
J.
Byrnes
, ed.,
Springer
,
Berlin
, pp.
101
125
.
7.
Müller
,
A.
, and
Maisser
,
P.
,
2003
, “
A Lie-group Formulation of Kinematics and Dynamics of Constrained Mbs and Its Application to Analytical Mechanics
,”
Multi. Syst. Dynam.
,
9
, pp.
311
352
.
8.
Dai
,
J. S.
,
2015
, “
Euler–Rodrigues Formula Variations, Quaternion Conjugation and Intrinsic Connections
,”
Mech. Mach. Theory.
,
92
, pp.
144
152
.
9.
Chirikjian
,
G. S.
, and
Kyatkin
,
A. B.
,
2016
,
Harmonic Analysis for Engineers and Applied Scientists,Updated and Expanded Edition
,
Dover Publications
,
New York
.
10.
McCarthy
,
J. M.
,
1990
,
Introduction to Theoretical Kinematics
,
MIT Press
,
Cambridge, MA
.
11.
Bottema
,
O.
, and
Roth
,
B.
,
1990
,
Theoretical Kinematics
, Vol.
24
,
Courier Corporation
.
12.
Ge
,
Q. J.
,
Yu
,
Z.
,
Arbab
,
M.
, and
Langer
,
M. P.
,
2022
, “On the Computation of the Average of Planar Displacements,”
Mechanisms and Machine Science
,
P.
Larochelle
,
and J. M.
McCarthy
, eds.,
Springer Science and Business Media B.V.
,
Berlin
, pp.
232
242
.
13.
Mardia
,
K. V.
,
Jupp
,
P. E.
, and
Mardia
,
K.
,
2000
,
Directional Statistics
, Vol.
2
,
Wiley Online Library
.
14.
Ge
,
Q. J.
,
Yu
,
Z.
,
Arbab
,
M.
, and
Langer
,
M.
,
2024
, “
On the Computation of Mean and Variance of Spatial Displacements
,”
ASME J. Mech. Rob.
,
16
(1), p.
011006
.
15.
Jolliffe
,
I. T.
, and
Cadima
,
J.
,
2016
, “
Principal Component Analysis: A Review and Recent Developments
,”
Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci.
,
374
(
2065
), p.
20150202
.
16.
Angeles
,
J.
,
2006
, “
Is There a Characteristic Length of a Rigid-body Displacement?
,”
Mech Mach Theory
,
41
, pp.
884
896
.
You do not currently have access to this content.