Abstract

Physical human–robot interfaces (pHRIs) enabled the robots to work alongside the human workers complying with the regulations set for physical human–robot interaction systems. A variety of actuation systems named variable stiffness/impedance actuators (VSAs) are configured to be used in these systems’ design. Recently, we introduced a new continuously variable transmission (CVT) mechanism as an alternative solution in configuring VSAs for pHRI. The optimization of this CVT has significant importance to enhance its application area and to detect the limitations of the system. Thus, in this paper, we present a design optimization approach (an adjustment strategy) for this system based on the design goals, desired force, and minimization of the size of the system. To implement such design goals, the static force analysis of the CVT is performed and validated. Furthermore, the fabrication of the optimized prototype is presented, and the experimental verification is performed considering the requirements of VSAs: independent position and stiffness variation, and shock absorbing. Finally, the system is calibrated to display 6 N continuous output force throughout its transmission variation range.

References

1.
Vanderborght
,
B.
,
Albu-Schaeffer
,
A.
,
Bicchi
,
A.
,
Burdet
,
E.
,
Caldwell
,
D. G.
,
Carloni
,
R.
,
Catalano
,
M.
, et al
,
2013
, “
Variable Impedance Actuators: A Review
,”
Rob. Auton. Syst.
,
61
(
12
), pp.
1601
1614
.
2.
Wolf
,
S.
, and
Hirzinger
,
G.
,
2008
, “
A New Variable Stiffness Design: Matching Requirements of the Next Robot Generation
,”
IEEE International Conference on Robotics and Automation
,
Pasadena, CA
,
May 19–23
, pp.
1741
1716
.
3.
Ishida
,
T.
, and
Takanashi
,
A.
,
2006
, “
A Robot Actuator Development With High Backdrivability
,”
IEEE International Conference on Robotics and Automation
,
Bangkok, Thailand
,
June 1–3
.
4.
Jafari
,
A.
,
Tsagarakis
,
N.
,
Vanderborght
,
B.
, and
Caldwell
,
D.
,
2010
, “
A Novel Actuator With Adjustable Stiffness (AwAS)
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Taipei, Taiwan
,
Oct. 18–22
, pp.
4201
4206.
5.
Grebenstein
,
M.
,
Albu-Schaeffer
,
A.
,
Bahls
,
T.
,
Chalon
,
M.
,
Eiberger
,
O.
,
Friedl
,
W.
,
Gruber
,
R.
, et al
,
2011
, “
The DLR Hand Arm System
,”
IEEE International Conference on Robotics and Automation
,
Shanghai, China
,
May 9–13
, pp.
3175
3182.
6.
Faulring
,
E. L.
,
Colgate
,
J. E.
, and
Peshkin
,
M. A.
,
2006
, “
The Cobotic Hand Controller: Design, Control and Performance of a Novel Haptic Display
,”
Int. J. Rob. Res.
,
25
(
11
), pp.
1099
1119
.
7.
Kim
,
J.
,
Park
,
F. C.
,
Park
,
Y.
, and
Shizuo
,
M.
,
2002
, “
Design and Analysis of a Spherical Continuously Variable Transmission
,”
ASME J. Mech. Des.
,
124
(
1
), pp.
21
29
.
8.
Sclater
,
N.
,
2001
,
Mechanism & Mechanical Devices Sourcebook
,
McGraw-Hill
,
New York
(Chap. 13).
9.
Wang
,
X. F.
, and
Zhu
,
W. D.
,
2014
, “
Design, Modelling, and Simulation of a Geared Infinitely Variable Transmission
,”
ASME J. Mech. Des.
,
136
(
7
), p. 071011.
10.
Ivanov
,
K.
,
2012
, “
Self-Adjusting Motor-Wheel With CVT
,”
Int. J. Eng. Innov. Technol.
,
2
(
5
), pp.
287
291
.
11.
Alò
,
R.
,
Bottiglione
,
F.
, and
Mantriota
,
G.
,
2018
, “
Flywheel-Infinitely Variable Transmissions for Energy Recovery Capabilities in Artificial Knee Joints
,”
Mech. Based Des. Struct. Mach. Int. J.
,
46
(
3
), pp.
333
346
.
12.
Wolf
,
S.
,
Grioli
,
G.
,
Eiberger
,
O.
,
Friedl
,
W.
,
Grebenstein
,
M.
,
Höppner
,
H.
,
Burdet
,
E.
, et al
,
2016
, “
Variable Stiffness Actuators: Review on Design and Components
,”
IEEE/ASME Trans. Mechatron.
,
21
(
5
), pp.
2418
2430
.
13.
Mobedi
,
E.
, and
Dede
,
M. İ. C.
,
2020
, “A Continuously Variable Transmission System Designed for Human–Robot Interfaces,”
Mechanism and Machine Science: Select Proceedings of Asian MMS 2018. Mechanisms and Machine Science
,
D.
Sen
,
S.
Mohan
, and
G. K.
Ananthasuresh
, eds.,
Springer
,
Cham
, pp.
29
41
.
14.
Mobedi
,
E.
, and
Dede
,
M. İ. C.
,
2019
, “
Geometrical Analysis of a Continuously Variable Transmission (CVT) System Designed for Human–Robot Interfaces
,”
Mech. Mach. Theory
,
140
, pp.
567
585
.
15.
Mobedi
,
E.
, and
Dede
,
M. İ. C.
,
2020
, “
Calibration Study of a Continuously Variable Transmission System Designed for pHRI
,”
New Trends in Mechanism and Machine Science: Conference Proceedings of EuCoMeS 2020. Mechanisms and Machine Science
,
Romania
,
Sept. 7–10
.
16.
Mobedi
,
E.
, and
Dede
,
M. İ. C.
,
2023
, “
A Collaborative Robot Joint With Continuously Variable Transmission
,”
European Patent Office, EP 3 864 323 B1, Filed 10 October 2019, and Issued 11 January 2023
. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2020076277
17.
Martinez
,
M. O.
,
Morimoto
,
T. K.
,
Taylor
,
A. T.
,
Barron
,
A. C.
,
Pultorak
,
J. D. D.
,
Wang
,
J.
,
Calasanz-Kaiser
,
A.
, et al
,
2016
, “
3-D Printed Haptic Devices for Educational Applications
,”
IEEE Haptics Symposium
,
Philadelphia, PA
,
Apr. 8–11
, pp.
126
133
.
18.
Samur
,
E.
,
Sedef
,
M.
,
Basdogan
,
C.
,
Aytan
,
L.
, and
Duzgun
,
O.
,
2007
, “
A Robotic Intender for Minimally Invasive Measurement and Characterization of Soft Tissue Response
,”
Med. Image Anal.
,
11
(
4
), pp.
361
373
.
19.
Yang
,
X.
,
Koziel
,
S.
, and
Leifsson
,
L.
,
2013
, “
Computational Optimization, Modelling and Simulation: Recent Trends and Challenges
,”
Proc. Comput. Sci.
,
18
, pp.
855
860
.
20.
Yoo
,
J.
,
Hyun
,
M. W.
,
Choi
,
J. H.
,
Kang
,
S.
, and
Kim
,
S.-J.
,
2009
, “
Optimal Design of a Variable Stiffness Joint in a Robot Manipulator Using the Response Surface Method
,”
J. Mech. Sci. Technol.
,
23
, pp.
2236
2243
.
21.
Hyun
,
M. W.
,
Yoo
,
J.
,
Hwang
,
S. T.
,
Choi
,
J. H.
,
Kang
,
S.
, and
Kim
,
S.
,
2007
, “
Optimal Design of a Variable Stiffness Joint Using Permanent Magnets
,”
IEEE Trans. Magn.
,
43
(
6
), pp.
2710
2712
.
You do not currently have access to this content.