Abstract

Despite significant performance advantages, the intractable forward kinematics have always restricted the application of parallel manipulators to small posture spaces. Traditional analytical methods and Newton–Raphson method usually cannot solve this problem well due to lack of generality or latent divergence. To address this issue, this study employs recent advances in deep learning to propose a novel physics-informed Newton–Raphson network (PhyNRnet) to rapidly and accurately solve this forward kinematics problem for general parallel manipulators. The main strategy of PhyNRnet is to combine the Newton–Raphson method with the neural network, which helps to significantly improve the accuracy and convergence speed of the model. In addition, to facilitate the network optimization, semi-autoregression, hard imposition of initial/boundary conditions (I/BCs), batch normalization, etc. are developed and applied in PhyNRnet. Unlike previous data-driven paradigms, PhyNRnet adopts the physics-informed loss functions to guide the network optimization, which gives the model clear physical meaning and helps improve generalization ability. Finally, the performance of PhyNRnet is verified by three parallel manipulator paradigms with large postures, where the Newton–Raphson method has generally diverged. Besides, the efficiency analysis shows that PhyNRnet consumes only a small amount of time at each time-step, which meets the real-time requirements.

References

1.
Stewart
,
D.
,
1965
, “
A Platform With Six Degrees of Freedom
,”
Proc. Inst. Mech. Eng.
,
180
(
15
), pp.
371
386
.
2.
Cappel
,
K. L.
,
1967
, “
Motion Simulator
”, US Patent No. 3,295,224.
3.
Blaise
,
J.
,
Bonev
,
I.
,
Monsarrat
,
B.
,
Briot
,
S.
,
Michel Lambert
,
J.
, and
Perron
,
C.
,
2010
, “
Kinematic Characterisation of Hexapods for Industry
,”
Ind. Rob.
,
37
(
1
), pp.
580
584
.
4.
Lei
,
M. F.
,
Zhou
,
B. C.
,
Lin
,
Y. X.
,
Chen
,
F. D.
,
Shi
,
C. H.
, and
Peng
,
L. M.
,
2020
, “
Model Test to Investigate Reasonable Reactive Artificial Boundary in Shaking Table Test With a Rigid Container
,”
J. Cent. South Univ.
,
27
(
1
), pp.
210
220
.
5.
Liu
,
H. Y.
,
Yu
,
Z. W.
,
Guo
,
W.
, and
Jiang
,
L. Z.
,
2022
, “
Novel Dynamic Test System for Simulating High-Speed Train Moving on Bridge Under Earthquake Excitation
,”
J. Cent. South Univ.
,
29
(
8
), pp.
2485
2501
.
6.
Guo
,
W.
,
He
,
C. J.
, and
Shao
,
P.
,
2022
, “
A Novel System Identification Method for Servo-Hydraulic Shaking Table Using Physics-Guided Long Short-Term Memory Network
,”
Mech. Syst. Signal Process.
,
178
, p.
109277
.
7.
Geng
,
Z. J.
, and
Haynes
,
L. S.
,
1994
, “
Six Degree-of-Freedom Active Vibration Control Using the Stewart Platforms
,”
IEEE Trans. Control Syst. Technol.
,
2
(
1
), pp.
45
53
.
8.
Foshage
,
J.
,
Davis
,
T.
,
Sullivan
,
J. M.
,
Hoffman
,
T.
, and
Das
,
A.
,
1996
, “
Hybrid Active/Passive Actuator for Spacecraft Vibration Isolation and Suppression
,”
Proceedings of SPIE-The International Society for Optical Engineering
,
2865
, pp.
104
122
.
9.
Kelaiaia
,
R.
,
Zaatri
,
A.
, and
Company
,
O.
,
2012
, “
Multiobjective Optimization of 6-dof UPS Parallel Manipulators
,”
Adv. Rob.
,
26
(
16
), pp.
1885
1913
.
10.
Kelaiaia
,
R.
,
Chemori
,
A.
,
Brahmia
,
A.
,
Kerboua
,
A.
,
Zaatri
,
A.
, and
Company
,
O.
,
2023
, “
Optimal Dimensional Design of Parallel Manipulators With an Illustrative Case Study: A Review
,”
Mech. Mach. Theory
,
188
, p.
105390
.
11.
Brahmia
,
A.
,
Kelaiaia
,
R.
,
Company
,
O.
, and
Chemori
,
A.
,
2022
, “
Kinematic Sensitivity Analysis of Manipulators Using a Novel Dimensionless Index
,”
Rob. Auton. Syst.
,
150
, p.
104021
.
12.
Dasgupta
,
B.
, and
Mruthyunjaya
,
T. S.
,
2000
, “
The Stewart Platform Manipulator: A Review
,”
Mech. Mach. Theory
,
35
(
1
), pp.
15
40
.
13.
Merlet
,
J. P.
,
2004
, “
Solving the Forward Kinematics of a Gough-Type Parallel Manipulator With Interval Analysis
,”
Int. J. Rob. Res.
,
23
(
3
), pp.
221
235
.
14.
Raghavan
,
M.
,
1993
, “
The Stewart Platform of General Geometry Has 40 Configurations
,”
ASME J. Mech. Des.
,
115
(
2
), pp.
277
282
.
15.
Dhingra
,
A. K.
,
Almadi
,
A. N.
, and
Kohli
,
D.
,
2000
, “
A Grobner-Sylvester Hybrid Method for Closed-Form Displacement Analysis of Mechanisms
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
431
438
.
16.
Merlet
,
J. P.
,
1993
, “
Direct Kinematics of Parallel Manipulators
,”
IEEE Trans. Rob. Autom.
,
9
(
6
), pp.
842
846
.
17.
Li
,
K.
,
Pan
,
B.
,
Gao
,
W. P.
,
Feng
,
H. B.
, and
Wang
,
S. G.
,
2015
, “
Miniature 6-Axis Force/Torque Sensor for Force Feedback in Robot-Assisted Minimally Invasive Surgery
,”
J. Cent. South Univ.
,
22
(
12
), p.
12
.
18.
Griffis
,
M.
, and
Duffy
,
J.
,
1989
, “
A Forward Displacement Analysis of a Class of Stewart Platforms
,”
J. Rob. Syst.
,
6
(
6
), pp.
703
720
.
19.
Wenger
,
P.
,
Chablat
,
D.
, and
Zein
,
M.
,
2006
, “
Degeneracy Study of the Forward Kinematics of Planar 3-RPR Parallel Manipulators
,”
ASME J. Mech. Des.
,
129
(
12
), pp.
1265
1268
.
20.
Lu
,
Y.
,
Hu
,
B.
,
Han
,
J.
, and
Yu
,
J.
,
2011
, “
Kinematics Analysis of Some Linear Legs With Different Structures for Limited-dof Parallel Manipulators
,”
ASME J. Mech. Rob.
,
3
(
1
), p.
011005
.
21.
Gallardo-Alvarado
,
J.
, and
Rodriguez-Castro
,
R.
,
2018
, “
A New Parallel Manipulator With Multiple Operation Modes
,”
ASME J. Mech. Rob.
,
10
(
5
), p.
051012
.
22.
Innocenti
,
C.
, and
Parenti-Castelli
,
V.
,
1993
, “
Closed-Form Direct Position Analysis of a 5–5 Parallel Mechanism
,”
ASME J. Mech. Des.
,
115
(
3
), pp.
515
521
.
23.
Zsombor-Murray
,
P. J.
, and
Gfrerrer
,
A.
,
2010
, “
A Unified Approach to Direct Kinematics of Some Reduced Motion Parallel Manipulators
,”
ASME J. Mech. Rob.
,
2
(
2
), pp.
165
189
.
24.
Husain
,
M.
, and
Waldron
,
K. J.
,
1994
, “
Direct Position Kinematics of the 3-1-1-1 Stewart Platforms
,”
ASME J. Mech. Des.
,
116
(
4
), pp.
1102
1107
.
25.
McCarthy
,
J. M.
,
2011
, “
Kinematics, Polynomials, and Computers—A Brief History
,”
ASME J. Mech. Rob.
,
3
(
1
), p.
010201
.
26.
Mcaree
,
P. R.
, and
Daniel
,
R. W.
,
1996
, “
A Fast, Robust Solution to the Stewart Platform Forward Kinematics
,”
J. Rob. Syst.
,
13
(
7
), pp.
407
427
.
27.
Nielsen
,
J.
, and
Roth
,
B.
,
1996
,
The Direct Kinematics of the General 6-5 Stewart-Gough Mechanism
,
Springer
,
Netherlands
, pp.
7
16
.
28.
Ren
,
L.
,
Feng
,
Z.
, and
Mills
,
J. K.
,
2006
, “
A Self-Tuning Iterative Calculation Approach for the Forward Kinematics of a Stewart-Gough Platform
,”
Proceedings of the 2006 International Conference on Mechatronics and Automation
,
Luoyang, China
,
June 25–28
, IEEE.
29.
Tarokh
,
M.
,
2007
, “
Real Time Forward Kinematics Solutions for General Stewart Platforms
,”
Proceedings of the IEEE International Conference on Robotics & Automation
,
Roma, Italy
,
Apr. 10–14
, IEEE, pp.
901
906
.
30.
Parikh
,
P. J.
, and
Lam
,
S.
,
2005
, “
A Hybrid Strategy to Solve the Forward Kinematics Problem in Parallel Manipulators
,”
IEEE Trans. Rob.
,
21
(
1
), pp.
18
25
.
31.
Chen
,
G.
, and
Lai
,
D.
,
2011
, “
Feedback Anticontrol of Discrete Chaos
,”
Int. J. Bifurc. Chaos
,
8
(
7
), pp.
1585
1590
.
32.
Morell
,
A.
,
Tarokh
,
M.
, and
Acosta
,
L.
,
2013
, “
Solving the Forward Kinematics Problem in Parallel Robots Using Support Vector Regression
,”
Eng. Appl. Artif. Intell.
,
26
(
7
), pp.
1698
1706
.
33.
Choon
,
S. Y.
, and
Kah-bin
,
L.
,
1997
, “
Forward Kinematics Solution of Stewart Platform Using Neural Networks
,”
Neurocomputing
,
16
(
4
), pp.
333
349
.
34.
Bevilacqua
,
V.
,
Dotoli
,
M.
,
Foglia
,
M. M.
,
Acciani
,
F.
,
Tattoli
,
G.
, and
Valori
,
M.
,
2014
, “
Artificial Neural Networks for Feedback Control of a Human Elbow Hydraulic Prosthesis
,”
Neurocomputing
,
137
, pp.
3
11
.
35.
Ramanababu
,
S.
,
Raju
,
V. R.
, and
Ramji
,
K.
,
2013
, “
Neural Network Solutions of Forward Kinematics for 3rps Parallel Manipulator
,”
Proceedings of the National Conference on Machines and Mechanisms
,
Roorkee, India
,
Dec. 18–20
.
36.
Durali
,
M.
, and
Shameli
,
E.
,
2004
, “
Full Order Neural Velocity and Acceleration Observer for a General 6-6 Stewart Platform
,”
Proceedings of the IEEE International Conference on Networking, Sensing and Control
,
Taipei, Taiwan
,
Mar. 21–23
, pp.
333
338
.
37.
Wang
,
X. S.
,
Hao
,
M. L.
, and
Cheng
,
Y. H.
,
2008
, “
On the Use of Differential Evolution for Forward Kinematics of Parallel Manipulators
,”
Appl. Math. Comput.
,
205
(
2
), pp.
760
769
.
38.
Chandra
,
R.
, and
Rolland
,
L.
,
2011
, “
On Solving the Forward Kinematics of 3RPR Planar Parallel Manipulator Using Hybrid Metaheuristics
,”
Appl. Math. Comput.
,
217
(
22
), pp.
8997
9008
.
39.
Haghighat
,
E.
,
Raissi
,
M.
,
Moure
,
A.
,
Gomez
,
H.
, and
Juanes
,
R.
,
2021
, “
A Physics-Informed Deep Learning Framework for Inversion and Surrogate Modeling in Solid Mechanics
,”
Comput. Meth. Appl. Mech. Eng.
,
379
, p.
113741
.
40.
Wessels
,
H.
,
Weißenfels
,
C.
, and
Wriggers
,
P.
,
2020
, “
The Neural Particle Method–An Updated Lagrangian Physics Informed Neural Network for Computational Fluid Dynamics
,”
Comput. Meth. Appl. Mech. Eng.
,
368
, p.
113127
.
41.
Mao
,
Z.
,
Jagtap
,
A. D.
, and
Karniadakis
,
G. E.
,
2020
, “
Physics-Informed Neural Networks for High-Speed Flows
,”
Comput. Meth. Appl. Mech. Eng.
,
2020
(
360
), p.
112789
.
42.
Jin
,
X.
,
Cai
,
S.
,
Li
,
H.
, and
Karniadakis
,
G. E.
,
2021
, “
Nsfnets (Navier-Stokes Flow Nets): Physics-Informed Neural Networks for the Incompressible Navier-Stokes Equations
,”
J. Comput. Phys.
,
426
, p.
109951
.
43.
Yang
,
X.
,
Zafar
,
S.
,
Wang
,
J. X.
, and
Xiao
,
H.
,
2019
, “
Predictive Large-Eddy-Simulation Wall Modeling via Physics-Informed Neural Networks
,”
Phys. Rev. Fluids
,
4
(
3
), p.
034602
.
44.
Zhang
,
R.
,
Liu
,
Y.
, and
Sun
,
H.
,
2020
, “
Physics-Informed Multi-LSTM Networks for Metamodeling of Nonlinear Structures
,”
Comput. Meth. Appl. Mech. Eng.
,
369
, p.
113226
.
45.
Zhang
,
R.
,
Liu
,
Y.
, and
Sun
,
H.
,
2020
, “
Physics-Guided Convolutional Neural Network (PhyCNN) for Data-Driven Seismic Response Modeling
,”
Eng. Struct.
,
215
, p.
110704
.
46.
Lu
,
L.
,
Dao
,
M.
,
Kumar
,
P.
,
Ramamurty
,
U.
,
Karniadakis
,
G. E.
, and
Suresh
,
S.
,
2020
, “
Extraction of Mechanical Properties of Materials Through Deep Learning From Instrumented Indentation
,”
Proc. Natl. Acad. Sci. U.S.A.
,
117
(
13
), pp.
7052
7062
.
47.
Yin
,
M.
,
Zheng
,
X.
,
Humphrey
,
J. D.
, and
Karniadakis
,
G. E.
,
2021
, “
Non-Invasive Inference of Thrombus Material Properties With Physics-Informed Neural Networks
,”
Comput. Meth. Appl. Mech. Eng.
,
375
, p.
113603
.
48.
Shukla
,
K.
,
Di Leoni
,
P. C.
,
Blackshire
,
J.
,
Sparkman
,
D.
, and
Karniadakis
,
G. E.
,
2020
, “
Physics-Informed Neural Network for Ultrasound Nondestructive Quantification of Surface Breaking Cracks
,”
J. Nondestr. Eval.
,
39
(
3
), pp.
1
20
.
49.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2019
, “
Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
378
, pp.
686
707
.
50.
Raissi
,
M.
,
2018
, “
Deep Hidden Physics Models: Deep Learning of Nonlinear Partial Differential Equations
,”
J. Mach. Learn. Res.
,
19
(
1
), pp.
932
955
.
51.
Raissi
,
M.
,
Wang
,
Z.
,
Triantafyllou
,
M. S.
, and
Karniadakis
,
G. E.
,
2019
, “
Deep Learning of Vortex-Induced Vibrations
,”
J. Fluid Mech.
,
861
, pp.
119
137
.
52.
Raissi
,
M.
,
Yazdani
,
A.
, and
Karniadakis
,
G. E.
,
2020
, “
Hidden Fluid Mechanics: Learning Velocity and Pressure Fields From Flow Visualizations
,”
Science
,
367
(
6481
), pp.
1026
1030
.
55.
Hornik
,
K.
,
Stinchcombe
,
M. B.
, and
White
,
H.
,
1989
, “
Multilayer Feedforward Networks Are Universal Approximators
,”
Neural Networks
,
2
(
5
), pp.
359
366
.
56.
Ioffe
,
S.
, and
Szegedy
,
C.
,
2015
, “
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
,”
Proceedings of the International Conference on Machine Learning
,
Lille, France
.
57.
Ba
,
J. L.
,
Kiros
,
J. R.
, and
Hinton
,
G. E.
,
2016
, “
Layer Normalization
,”
arXiv.1607.06450
. https://arxiv.org/abs/1607.06450
58.
Salimans
,
T.
, and
Kingma
,
D. P.
,
2016
, “
Weight Normalization: A Simple Reparameterization to Accelerate Training of Deepneural Networks
,”
arXiv.1602.07868
. https://arxiv.org/abs/1602.07868
59.
Lu
,
L.
,
Pestourie
,
R.
,
Yao
,
W.
,
Wang
,
Z.
,
Verdugo
,
F.
, and
Johnson
,
S. G.
,
2021
, “
Physics-Informed Neural Networks With Hard Constraints for Inverse Design
,”
SIAM J. Sci. Comput.
,
43
(
6
), pp.
B1105
B1132
.
60.
Silva
,
C. E.
,
Gomez
,
D.
,
Maghareh
,
A.
,
Dyke
,
S. J.
, and
Spencer
,
B. F.
,
2020
, “
Benchmark Control Problem for Real-Time Hybrid Simulation
,”
Mech. Syst. Signal Process.
,
135
, p.
106381
.
61.
Abadi
,
M.
,
Agarwal
,
A.
,
Barham
,
P.
,
Brevdo
,
E.
,
Chen
,
Z.
, and
Citro
,
C.
,
2016
, “
Tensorflow: Large-Scale Machine Learning on Heterogeneous Distributed Systems
,”
10.48550/arXiv.1603.04467
. https://arxiv.org/abs/1603.04467
62.
Srivastava
,
N.
,
Hinton
,
G.
,
Krizhevsky
,
A.
,
Sutskever
,
I.
, and
Salakhutdinov
,
R.
,
2014
, “
Dropout: A Simple Way to Prevent Neural Networks From Overfitting
,”
J. Mach. Learn. Res.
,
15
(
1
), pp.
1929
1958
.
63.
Xue
,
J.
,
Tang
,
Z.
, and
Pei
,
Z.
,
2014
, “
Numerical Method of Forward Position Solution for 6-3 Stewart Platform Based on Mechanism Simplification
,”
J. Beijing Univ. Aeronaut. Astronaut.
,
40
(
7
), pp.
921
926
.
You do not currently have access to this content.