Abstract

In type synthesis of mechanisms, isomorphic identification of kinematic chains is a key issue, which has been studied for many years. In this paper, a new topological invariant, a character array of edge is constructed based on a novel model called an equivalent mechanical model. This invariant is used as a necessary condition for recognizing the edges of two topological graphs. On this basis, a method of constructing mapping by closed loop is proposed. The constructed mapping is used as the adequacy of identification so as to accurately identify the isomorphism of two graphs. This method is sufficient and necessary, which has been successfully tested in the 10-vertex, 12-vertex, 15-vertex, 28-vertex topological graphs. This method is limited to planar mechanisms that consist of revolute joints.

References

1.
Bondy
,
J. A.
, and
Murty
,
U. S. R.
,
1976
,
Graph Theory With Applications
,
The Macmillan Press Ltd
,
London and Basingstoke
.
2.
Wei
,
S.
,
Jianyi
,
K.
,
Xingdong
,
W.
, and
Yu
,
H.
,
2020
, “
Description and Isomorphism Judgment of the Kinematic Chain With Multiple Joints Based on Link-Link Adjacency Matrix
,”
J. Mech. Eng.
,
56
(
3
), pp.
41
46
.
3.
Ping
,
Y.
,
NingBo
,
L.
,
Bin
,
Y.
,
JianNing
,
D.
, and
Jichang
,
Y.
,
2007
, “
A Mixed Isomorphism Approach for Kinematic Structure Enumeration Graphs Based on Intelligent Design and Manufacturing
,”
Int. J. Adv. Manuf. Tech.
,
31
(
9–10
), pp.
841
845
.
4.
Yang
,
P.
,
Pei
,
Z. H.
,
Liao
,
N. B.
, and
Yang
,
B.
,
2007
, “
Isomorphism Identification for Epicyclic Gear Mechanism Based on Mapping Property and Ant Algorithm
,”
Eng. Comput.
,
23
(
1
), pp.
49
54
.
5.
Deng
,
T.
,
Xu
,
H.
,
Tang
,
P.
,
Liu
,
P.
, and
Yan
,
L.
,
2020
, “
A Novel Algorithm for the Isomorphism Detection of Various Kinematic Chains Using Topological Index
,”
Mech. Mach. Theory
,
146
, p.
103740
.
6.
Rai
,
R. K.
, and
Punjabi
,
S.
,
2018
, “
Kinematic Chains Isomorphism Identification Using Link Connectivity Number and Entropy Neglecting Tolerance and Clearance
,”
Mech. Mach. Theory
,
123
, pp.
40
65
.
7.
Rai
,
R. K.
, and
Punjabi
,
S.
,
2019
, “
A New Algorithm of Links Labelling for the Isomorphism Detection of Various Kinematic Chains Using Binary Code
,”
Mech. Mach. Theory
,
131
, pp.
1
32
.
8.
Venkata Kamesh
,
V.
,
Mallikarjuna Rao
,
K.
, and
Balaji Srinivasa Rao
,
A.
,
2017
, “
An Innovation Approach to Detect Isomorphism in Planar and Geared Kinematic Chains Using Graph Theory
,”
ASME J. Mech. Des.
,
139
(
12
), p.
122301
.
9.
Chang
,
Z. Y.
,
Zhang
,
C.
,
Yang
,
Y. H.
, and
Wang
,
Y. X.
,
2002
, “
A new Method to Mechanism Kinematic Chain Isomorphism Identification
,”
Mech. Mach. Theory
,
37
(
4
), pp.
411
417
.
10.
Cubillo
,
J. P.
, and
Wan
,
J. B.
,
2005
, “
Comments on Mechanism Kinematic Chain Isomorphism Identification Using Adjacent Matrices
,”
Mech. Mach. Theory
,
40
(
2
), pp.
131
139
.
11.
He
,
P. R.
,
Zhang
,
W.
,
Li
,
Q.
, and
Wu
,
F. X.
,
2003
, “
A New Method for Detection of Graph Isomorphism Based on the Quadratic Form
,”
ASME. J. Mech. Des.
,
125
(
3
), pp.
640
642
.
12.
Dong
,
K. J.
,
Li
,
D. L.
, and
Kong
,
X. W.
,
2022
, “
Representation of Planar Kinematic Chains With Multiple Joints Based on a Modified Graph and Isomorphism Identification
,”
Mech. Mach. Theory
,
172
, p.
104793
.
13.
Sun
,
L.
,
Cui
,
R. J.
,
Ye
,
Z. Z.
,
Zhou
,
Y. Z.
,
Xu
,
Y. D.
, and
Wu
,
C. Y.
,
2020
, “
Similarity Recognition and Isomorphism Identification of Planar Kinematic Chains
,”
Mech. Mach. Theory
,
145
, p.
103678
.
14.
Yang
,
F.
,
Deng
,
Z. Q.
,
Tao
,
J. G.
, and
Li
,
L. F.
,
2012
, “
A New Method for Isomorphism Identification in Topological Graphs Using Incident Matrices
,”
Mech. Mach. Theory
,
49
, pp.
298
307
.
15.
Ding
,
H. F.
, and
Huang
,
Z.
,
2007
, “
The Establishment of the Canonical Perimeter Topological Graph of Kinematic Chains and Isomorphism Identification
,”
ASME J. Mech. Des.
,
129
(
9
), pp.
915
922
.
16.
Ding
,
H. F.
,
Huang
,
Z.
, and
Mu
,
D. J.
,
2008
, “
Computer-Aided Structure Decomposition Theory of Kinematic Chains and Its Applications
,”
Mech. Mach. Theory
,
43
(
12
), pp.
1596
1609
.
17.
Ding
,
H. F.
, and
Huang
,
Z.
,
2009
, “
Loop Theory and Applications to Some Key Problems of Kinematic Structure of Kinematic Chains
,”
Front. Mech. Eng.
,
4
(
3
), pp.
276
283
.
18.
Ding
,
H. F.
, and
Huang
,
Z.
,
2009
, “
Isomorphism Identification of Graphs: Especially for the Graphs of Kinematic Chains
,”
Mech. Mach. Theory
,
44
(
1
), pp.
122
139
.
19.
Helal
,
M.
,
Hu
,
J. W.
, and
Eleashy
,
H.
,
2021
, “
A New Algorithm for Unique Representation and Isomorphism Detection of Planar Kinematic Chains With Simple and Multiple Joints
,”
Processes
,
9
(
601
), pp.
1
45
.
20.
Sun
,
L.
,
Liu
,
X.
,
Hong
,
X.
,
Hong
,
X. X.
,
Pei
,
H. C.
, and
Zhang
,
D. P.
,
2022
, “
An Isomorphism Identification Method of Kinematic Chain Based on Optimal Arrangement and Comparison of Branch-Chain of Matrix Derived From Dendrogram Graph
,”
Adv. Mech. Eng.
,
89
(
1
), pp.
153
158
.
21.
Huang
,
P.
,
Liu
,
T. T.
,
Ding
,
H. F.
, and
Zhao
,
Y. Q.
,
2021
, “
Isomorphism Identification Algorithm and Database Generation for Planar 2-6 DOFs Fractionated Kinematic Chains Combined by Two or Three Non-Fractionated Kinematic Chains
,”
Mech. Mach. Theory
,
166
, p.
104520
.
22.
He
,
L. Y.
,
Liu
,
F. X.
,
Sun
,
L.
, and
Wu
,
C. Y.
,
2019
, “
Isomorphic Identification for Kinematic Chains Using Variable High-Order Adjacency Link Values
,”
J. Mech. Sci. Tech.
,
33
(
10
), pp.
4899
4907
.
23.
Lu
,
Y.
,
Mao
,
B.
, and
Yu
,
J.
,
2011
, “
Derivation and Isomorphism Identification of Valid Topological Graphs for 1-, 2-DOF Planar Closed Mechanisms by Characteristic Strings
,”
J. Mech. Sci. Technol.
,
25
(
1
), pp.
255
263
.
24.
Lu
,
Y.
,
Ding
,
L.
, and
Cui
,
W.
,
2009
, “
Computer Application in Type [Q11]Synthesis Based on Systematic Linkage and Topology Matrix-Graph Approach
,”
Second International Conference on Computer and Electrical Engineering
,
Dubai
,
Dec. 28–30
, pp.
118
122
.
25.
Dwivedi
,
A.
,
Bhattacharjee
,
A.
, and
Yadav
,
J. N.
,
2022
, “
A Method to Detect Isomorphism in Planar Kinematic Chains
,”
Machines, Mechanism and Robotics
, pp.
479
490
.
26.
Zou
,
Y.
, and
Yang
,
Y.
,
2016
, “
An Algorithm for Identifying the Isomorphism of Planar Multiple Joint and Gear Train Kinematic Chains
,”
Math. Prob. Eng.
,
2016
, pp.
1
15
.
27.
Galán-Marín
,
G.
,
López-Rodríguez
,
D.
, and
Mérida-Casermeiro
,
E.
,
2010
, “
A New Multivalued Neural Network for Isomorphism Identification of Kinematic Chains
,”
ASME J. Comput. Inf. Sci. Eng.
,
10
(
1
), p.
011009
.
28.
Kong
,
F. G.
,
Li
,
Q.
, and
Zhang
,
W. J.
,
1999
, “
An Artificial Neural Network Approach to Mechanism Kinematic Chain Isomorphism Identification
,”
Mech. Mach. Theory
,
34
(
2
), pp.
271
283
.
29.
Yang
,
P.
, and
Zeng
,
K. H.
,
2009
, “
A High-Performance Approach on Mechanism Isomorphism Identification Based on an Adaptive Hybrid Genetic Algorithm for Digital Intelligent Manufacturing
,”
Eng. Comput.
,
25
(
4
), pp.
397
403
.
30.
Rao
,
A. C.
,
2003
, “
A Genetic Algorithm for Epicyclic Gear Trains
,”
Mech. Mach. Theory
,
38
(
2
), pp.
135
147
.
31.
Zeng
,
K. H.
,
Fan
,
X. G.
,
Dong
,
M. C.
, and
Yang
,
P.
,
2014
, “
A Fast Algorithm for Kinematic Chain Isomorphism Identification Based on Dividing and Matching Vertices
,”
Mech. Mach. Theory
,
72
, pp.
25
38
.
32.
Xiao
,
R. B.
,
He
,
J. H.
,
Chang
,
M.
, and
Shi
,
H. M.
,
2001
, “
An Ant Algorithm Approach to the Isomorphism Identification of Mechanism Kinematic Chains
,”
ASME in International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Pittsburgh, PA
,
Sept. 9–12
, pp.
861
866
.
33.
Yang
,
P.
,
Zeng
,
K.
,
Li
,
C.
,
Yang
,
J. M.
, and
Wang
,
S. T.
,
2015
, “
An Improved Hybrid Immune Algorithm for Mechanism Kinematic Chain Isomorphism Identification in Intelligent Design
,”
Soft Comput.
,
19
(
1
), pp.
217
223
.
34.
Cui
,
R. J.
,
Ye
,
Z. Z.
,
Sun
,
L.
, and
Wu
,
C. Y.
,
2020
, “
Topological Invariant and Definition Method for Detecting Isomorphism in Planar Kinematic Chains
,”
J. Mech. Eng. Sci.
,
235
(
15
), pp.
2715
2724
.
35.
Gui
,
S.
,
2019
, “
Identification Design of One-DOF Eight-Bar Based on Limb Movements
,”
Mech. Mach. Theory
,
142
, p.
103592
.
36.
Fu
,
Z. X.
, and
Wu
,
Q. Q.
,
1988
, “
Finite Element Model for Dynamic Stress Analysis of Eight-Bar Linkage of Conticaster
,”
J. Huazhong Univ. Sci. Technol.
,
16
(
6
), pp.
97
104
.
You do not currently have access to this content.