Abstract

In the field of grasping application, continuum robots are characterized by flexible grasping and high adaptability. Based on research on the physiological structure and winding method of seahorses, a continuum robot with a helical winding grasping function is presented in this paper. The continuum robot is driven by cables and uses a new flexural pivot with large deformation as a rotation joint. Firstly, based on the Serret–Frenet frame of the spatial cylindrical helix, the helical winding continuum robot is modeled and solved. The change rules of parameters such as the rotation angle of the joint and the helix parameters under the helical winding method are derived. Then, the compliance matrix of the joint is solved using the structural matrix method, and a stiffness model is established to analyze the relationship between the load and deformation of the continuum robot. The kinematics model of the continuum robot is established by using the modified Denavit–Hartenberg parameter method. The static model of the continuum robot is solved by vector analysis under the condition of considering gravity, and the relationship between the length change of cables and joint curvature is obtained. Finally, the stiffness model and static model of the continuum robot are verified by simulations and experiments. The test results show that within a certain radial range, the continuum robot has the function of helical winding and grasping for objects. Compared to the previous imitation seahorse tail robot, the helical winding structure not only provides a larger grasping area compared to in-plane form but also achieves a better bionic effect.

References

1.
Hannan
,
M. W.
, and
Walker
,
I. D.
,
2003
, “
Kinematics and the Implementation of an Elephant’s Trunk Manipulator and Other Continuum Style Robots
,”
J. Intell. Robot. Syst.
,
20
(
2
), pp.
45
63
.
2.
Tang
,
X. Z.
,
Li
,
H. Q.
,
Ma
,
T.
,
Yang
,
Y.
,
Luo
,
J.
,
Wang
,
H. D.
, and
Jiang
,
P.
,
2022
, “
A Review of Soft Actuator Motion: Actuation, Design, Manufacturing and Applications
,”
Actuators
,
11
(
11
), p.
331
.
3.
Benvenuto
,
R.
,
Salvi
,
S.
, and
Lavagna
,
M.
,
2015
, “
Dynamics Analysis and GNC Design of Flexible Systems for Space Debris Active Removal
,”
Acta Astronaut.
,
110
, pp.
247
265
.
4.
Wang
,
M. F.
,
Palmer
,
D.
,
Dong
,
X.
,
Alatorre
,
D.
,
Axinte
,
D.
,
Norton
,
A.
, and
Kosecka
,
J.
,
2018
, “
Design and Development of a Slender Dual-Structure Continuum Robot for In-Situ Aeroengine Repair
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
, pp.
5648
5653
.
5.
Liu
,
Y. W.
,
Ge
,
Z.
,
Yang
,
S. K.
,
Walker
,
I. D.
, and
Ju
,
Z. J.
,
2019
, “
Elephant’s Trunk Robot: An Extremely Versatile Under-Actuated Continuum Robot Driven by a Single Motor
,”
ASME J. Mech. Rob.
,
11
(
5
), p.
051008
.
6.
Xie
,
Z.
,
Domel
,
A. G.
,
An
,
N.
,
Green
,
C.
,
Gong
,
Z.
,
Wang
,
T.
,
Knubben
,
E. M.
,
Weaver
,
J. C.
,
Bertoldi
,
K.
, and
Wen
,
L.
,
2020
, “
Octopus Arm-Inspired Tapered Soft Actuators With Suckers for Improved Grasping
,”
Soft Robot.
,
7
(
5
), pp.
639
648
.
7.
Hu
,
Y.
,
Zhang
,
L.
,
Li
,
W.
, and
Yang
,
G.
,
2019
, “
Design and Fabrication of a 3-D Printed Metallic Flexible Joint for Snake-Like Surgical Robot
,”
IEEE Robot. Autom. Lett.
,
4
(
2
), pp.
1557
1563
.
8.
Laschi
,
C.
,
Mazzolai
,
B.
, and
Cianchetti
,
M.
,
2016
, “
Soft Robotics: Technologies and Systems Pushing the Boundaries of Robot Abilities
,”
Sci. Robot.
,
1
(
1
), p.
eaah3690
.
9.
Xu
,
K.
, and
Liu
,
H.
,
2018
, “
Multi-Backbone Continuum Mechanisms: Forms and Applications
,”
J. Mech. Eng.
,
54
(
13
), pp.
25
33
.
10.
Shintake
,
J.
,
Cacucciolo
,
V.
,
Floreano
,
D.
, and
Shea
,
H.
,
2018
, “
Soft Robotic Grippers
,”
Adv. Mater.
,
30
(
29
), p.
1707035
.
11.
Al-Fahaam
,
H.
,
Davis
,
S.
, and
Nefti-Meziani
,
S.
,
2018
, “
The Design and Mathematical Modelling of Novel Extensor Bending Pneumatic Artificial Muscles (EBPAMs) for Soft Exoskeletons
,”
Rob. Auton. Syst.
,
99
, pp.
63
74
.
12.
Wang
,
Q. L.
,
Wang
,
W.
,
Ding
,
X. L.
, and
Yun
,
C.
,
2019
, “
A Force Control Joint for Robot-Environment Contact Application
,”
ASME J. Mech. Rob.
,
11
(
3
), p.
034502
.
13.
Shen
,
W.
,
Yang
,
G.
,
Zheng
,
T.
,
Wang
,
Y.
,
Yang
,
K.
, and
Fang
,
Z.
,
2020
, “
An Accuracy Enhancement Method for a Cable-Driven Continuum Robot With a Flexible Backbone
,”
IEEE Access
,
8
, pp.
37474
37481
.
14.
Wu
,
K.
,
Zheng
,
G.
, and
Zhang
,
J.
,
2022
, “
FEM-Based Trajectory Tracking Control of a Soft Trunk Robot
,”
Rob. Auton. Syst.
,
150
, p.
103961
.
15.
Liu
,
K.
,
Chen
,
W.
,
Yang
,
W.
,
Jiao
,
Z.
, and
Yu
,
Y.
,
2023
, “
Review of the Research Progress in Soft Robots
,”
Appl. Sci.
,
13
(
1
), p.
120
.
16.
Zhang
,
J.
,
Hu
,
Y.
,
Li
,
Y.
,
Ma
,
K.
,
Wei
,
Y.
,
Yang
,
J.
,
Wu
,
Z.
,
Rajabi
,
H.
,
Peng
,
H.
, and
Wu
,
J.
,
2022
, “
Versatile Like a Seahorse Tail: A Bio-Inspired Programmable Continuum Robot for Conformal Grasping
,”
Adv. Intell. Syst.
,
4
(
11
), p.
2200263
.
17.
Xu
,
K.
,
Zhao
,
J.
, and
Fu
,
M.
,
2015
, “
Development of the SJTU Unfoldable Robotic System (SURS) for Single Port Laparoscopy
,”
IEEE/ASME Trans. Mechatron.
,
20
(
5
), pp.
2133
2145
.
18.
Ehsani-Seresht
,
A.
, and
Hashemi-Pour Moosavi
,
S.
,
2020
, “
Dynamic Modeling of the Cable-Driven Continuum Robots in Hybrid Position-Force Actuation Mode
,”
ASME J. Mech. Rob.
,
12
(
5
), p.
051002
.
19.
Porter
,
M. M.
,
Adriaens
,
D.
,
Hatton
,
R. L.
,
Meyers
,
M. A.
, and
Mckittrick
,
J.
,
2015
, “
Why the Seahorse Tail is Square
,”
Science
,
349
(
6243
), p.
aaa6683
.
20.
Porter
,
M. M.
, and
Ravikumar
,
N.
,
2017
, “
3D-Printing a ‘Family’ of Biomimetic Models to Explain Armored Grasping in Syngnathid Fishes
,”
Bioinspir. Biomim.
,
12
(
6
), p.
066007
.
21.
Li
,
L.
,
Jin
,
T.
,
Tian
,
Y.
,
Yang
,
F.
, and
Xi
,
F.
,
2019
, “
Design and Analysis of a Square-Shaped Continuum Robot With Better Grasping Ability
,”
IEEE Access
,
7
, pp.
57151
57162
.
22.
Praet
,
T.
,
Adriaens
,
D.
,
Cauter
,
S. V.
,
Masschaele
,
B.
,
Beule
,
M. D.
, and
Verhegghe
,
B.
,
2012
, “
Inspiration From Nature: Dynamic Modelling of the Musculoskeletal Structure of the Seahorse Tail
,”
Int. J. Numer. Meth. Bio.
,
28
(
10
), pp.
1028
1042
.
23.
Yan
,
J. H.
,
Xu
,
B. B.
,
Zhang
,
X. B.
, and
Zhao
,
J.
,
2017
, “
Design and Test of a New Spiral Driven Pure Torsional Soft Actuator
,”
10th International Conference on Intelligent Robotics and Applications (ICIRA)
,
Wuhan, China, pp. 127-139
.
24.
Martinez
,
R. V.
,
Fish
,
C. R.
,
Chen
,
X.
, and
Whitesides
,
G. M.
,
2012
, “
Elastomeric Origami: Programmable Paper-Elastomer Composites as Pneumatic Actuators
,”
Adv. Funct. Mater.
,
7
(
22
), pp.
1376
1384
.
25.
Nishioka
,
Y.
,
Uesu
,
M.
,
Tsuboi
,
H.
, and
Kawamura
,
S.
,
2012
, “
Proposal of an Extremely Lightweight Soft Actuator Using Plastic Films With a Pleated Structure
,”
19th International Conference on Mechatronics and Machine Vision in Practice (M2VIP)
,
Auckland, New Zealand
, pp.
474
479
.
26.
Amase
,
H.
,
Nishioka
,
Y.
, and
Yasuda
,
T.
,
2015
, “
Mechanism and Basic Characteristics of a Helical Inflatable Gripper
,”
IEEE International Conference on Mechatronics and Automation (ICMA)
,
Beijing, China
, pp.
2559
2564
.
27.
Kawano
,
R.
,
Nishioka
,
Y.
,
Yasuda
,
T.
, and
Yamano
,
M.
,
2016
, “
The Proposal of a Helical Inflatable Gripper Winding Spirally Using the Wire Drive System
,”
The Proceedings of JSME Annual Conference on Robotics and Mechatronics (Robomec)
,
Yokohama, Japan
, pp . 2P1-05a2.
28.
Guan
,
Q.
,
Sun
,
J.
,
Liu
,
Y.
,
Wereley
,
N. M.
, and
Leng
,
J.
,
2020
, “
Novel Bending and Helical Extensile/Contractile Pneumatic Artificial Muscles Inspired by Elephant Trunk
,”
Soft Robot.
,
7
(
5
), pp.
597
614
.
29.
2022 Project Seahorse
, 2013, “Observations,” https://projectseahorse.org/iseahorse/
30.
Morrison
,
T.
, and
Su
,
H.
,
2020
, “
Stiffness Modeling of a Variable Stiffness Compliant Link
,”
Mech. Mach. Theory
,
153
, p.
104021
.
31.
Su
,
H.
,
Shi
,
H.
, and
Yu
,
J.
,
2012
, “
A Symbolic Formulation for Analytical Compliance Analysis and Synthesis of Flexure Mechanisms
,”
ASME J. Mech. Des.
,
134
(
5
), p.
051009
.
32.
Webster
,
R. J.
, and
Jones
,
B. A.
,
2010
, “
Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review
,”
Int. J. Rob. Res.
,
29
(
13
), pp.
1661
1683
.
33.
Bi
,
S. S.
,
Qiao
,
T.
,
Zhao
,
H. Z.
, and
Yu
,
J. J.
,
2012
, “
Stiffness Analysis of Two Compliant Pivots Used in Series Elastic Actuators
,”
Trans. Can. Soc. Mech. Eng.
,
36
(
3
), pp.
315
328
.
34.
Yuan
,
H.
,
Zhou
,
L.
, and
Xu
,
W.
,
2019
, “
A Comprehensive Static Model of Cable-Driven Multi-Section Continuum Robots Considering Friction Effect
,”
Mech. Mach. Theory
,
135
, pp.
130
149
.
35.
Yang
,
J.
,
Peng
,
H.
,
Zhou
,
W.
,
Zhang
,
J.
, and
Wu
,
Z.
,
2021
, “
A Modular Approach for Dynamic Modeling of Multisegment Continuum Robots
,”
Mech. Mach. Theory
,
165
, p.
104429
.
You do not currently have access to this content.