Abstract

The morphing wing can enable the aircraft to maintain good flight performance in different missions or flight stages, which has enjoyed much attention in recent research. However, it is difficult to design the wing with multiple configurations and lightweight. Inspired by the origami art, a reconfigurable mechanism with a single-degree-of-freedom (single-DOF) is introduced to the morphing wing design in this paper. The bending configuration, the deployable configuration, and the configuration transformation of the reconfigurable mechanism are respectively analyzed. The lengths of some links are also optimized according to the motion requirements. Specific kinematic pairs of the reconfigurable mechanism are required to have the locking function. Therefore, a reliable “plug-in” type lockable mechanism is designed and its working performance is verified by comparing the analytical model and the finite element method model. Finally, by assembling the reconfigurable mechanism with the ribs, the reconfigurable wing which can realize the arbitrary transformation of four configurations under a single drive mode can be obtained.

References

1.
Tsushima
,
N.
, and
Tamayama
,
M.
,
2019
, “
Recent Researches on Morphing Aircraft Technologies in Japan and Other Countries
,”
Mech. Eng. Rev.
,
6
(
2
), p.
19-00197
.
2.
Sun
,
J.
,
Guan
,
Q.
,
Liu
,
Y.
, and
Leng
,
J.
,
2016
, “
Morphing Aircraft Based on Smart Materials and Structures: A State-of-the-Art Review
,”
J. Intel. Mater. Syst. Struct.
,
27
(
17
), pp.
2289
2312
.
3.
Siddall
,
R.
,
Ortega Ancel
,
A.
, and
Kovač
,
M.
,
2017
, “
Wind and Water Tunnel Testing of a Morphing Aquatic Micro Air Vehicle
,”
Interface Focus
,
7
(
1
), p.
20160085
.
4.
Bachmann
,
R. J.
,
Vaidyanathan
,
R.
,
Boria
,
F. J.
,
Pluta
,
J.
,
Kiihne
,
J.
,
Taylor
,
B. K.
,
Bledsoe
,
R. H.
,
Ifju
,
P. G.
, and
Quinn
,
R. D.
,
2010
, “A Miniature Vehicle With Extended Aerial and Terrestrial Mobility,”
Flying Insects and Robots
,
D.
Floreano
ed.,
Springer Berlin Heidelberg
,
Cham, Switzerland
, pp.
247
270
.
5.
Kovač
,
M.
,
Zufferey
,
J. C.
, and
Floreano
,
D.
,
2010
, â Towards a “Self-Deploying and Gliding Robot,”
Flying Insects and Robots
,
D.
Floreano
ed.,
Springer Berlin Heidelberg
,
Cham, Switzerland
, pp.
271
284
.
6.
Zhang
,
J.
,
Liu
,
Y.
,
Gao
,
L.
,
Liu
,
B.
,
Zhu
,
Y.
,
Zang
,
X.
,
Zhao
,
J.
, and
Cai
,
H.
,
2022
, “
Bioinspired Drone Actuated Using Wing and Aileron Motion for Extended Flight Capabilities
,”
IEEE Rob. Autom. Lett.
,
7
(
4
), pp.
11197
11204
.
7.
Liang
,
J.
,
Yang
,
X.
,
Wang
,
T.
,
Yao
,
G.
, and
Zhao
,
W.
,
2013
, “
Design and Experiment of a Bionic Gannet for Plunge-Diving
,”
J. Bionic Eng.
,
10
(
3
), pp.
282
291
.
8.
Basaeri
,
H.
,
Yousefi-Koma
,
A.
,
Zakerzadeh
,
M. R.
, and
Mohtasebi
,
S. S.
,
2014
, “
Experimental Study of a Bio-Inspired Robotic Morphing Wing Mechanism Actuated by Shape Memory Alloy Wires
,”
Mechatronics
,
24
(
8
), pp.
1231
1241
.
9.
Liu
,
X.
,
Ding
,
J.
,
Dong
,
Y.
, and
Wang
,
C.
,
2022
, “
The Hybrid Synthesis of a Multi-functional Eight-Bar Linkage With a Translational Actuator
,”
Mech. Mach. Theory
,
173
, p.
104853
.
10.
Nie
,
R.
,
Qiu
,
J.
,
Ji
,
H.
, and
Li
,
D.
,
2016
, “
Aerodynamic Characteristic of the Active Compliant Trailing Edge Concept
,”
Int. J. Mod. Phys.: Conf. Ser.
,
42
, p.
1660173
.
11.
Wang
,
J.
,
Zhao
,
Y.
,
Xi
,
F.
, and
Tian
,
Y.
,
2020
, “
Design and Analysis of a Configuration-Based Lengthwise Morphing Structure
,”
Mech. Mach. Theory
,
147
, p.
103767
.
12.
Zhang
,
Y.
,
Ge
,
W.
,
Zhang
,
Z.
,
Mo
,
X.
, and
Zhang
,
Y.
,
2019
, “
Design of Compliant Mechanism-Based Variable Camber Morphing Wing With Nonlinear Large Deformation
,”
Int. J. Adv. Rob. Syst.
,
16
(
6
), p.
172988141988674
.
13.
Wang
,
Z.
, and
Yang
,
Y.
,
2021
, “
Design of a Variable-Stiffness Compliant Skin for a Morphing Leading Edge
,”
Appl. Sci.
,
11
(
7
), p.
3165
.
14.
Ajaj
,
R. M.
,
Friswell
,
M. I.
,
Bourchak
,
M.
, and
Harasani
,
W.
,
2016
, “
Span Morphing Using the GNATSpar Wing
,”
Aerosp. Sci. Technol.
,
53
, pp.
38
46
.
15.
Ajaj
,
R. M.
,
Saavedra Flores
,
E. I.
,
Friswell
,
M. I.
,
Allegri
,
G.
,
Woods
,
B. K. S.
,
Isikveren
,
A. T.
, and
Dettmer
,
W. G.
,
2013
, “
The Zigzag Wingbox for a Span Morphing Wing
,”
Aerosp. Sci. Technol.
,
28
(
1
), pp.
364
375
.
16.
Zhou
,
H.
,
Plummer
,
A. R.
, and
Cleaver
,
D.
,
2022
, “
Distributed Actuation and Control of a Tensegrity-Based Morphing Wing
,”
IEEE-ASME Trans. Mech.
,
27
(
1
), pp.
34
45
.
17.
Wong
,
A.
,
Bil
,
C.
, and
Marino
,
M.
,
2022
, “
Design and Aerodynamic Performance of a FishBAC Morphing Wing
,”
Proceedings of the AIAA SciTech Forum
,
San Diego, CA
,
Jan. 3–7
, p.
1298
.
18.
Takahashi
,
H.
,
Yokozeki
,
T.
, and
Hirano
,
Y.
,
2016
, “
Development of Variable Camber Wing With Morphing Leading and Trailing Sections Using Corrugated Structures
,”
J. Intel. Mater. Syst. Struct.
,
27
(
20
), pp.
2827
2836
.
19.
Kumar
,
D.
,
Ali
,
S. F.
, and
Arockiarajan
,
A.
,
2021
, “
Theoretical and Experimental Studies on Large Deflection Analysis of Double Corrugated Cantilever Structures
,”
Int. J. Solids Struct.
,
228
, p.
111126
.
20.
Icardi
,
U.
, and
Ferrero
,
L.
,
2009
, “
Preliminary Study of an Adaptive Wing With Shape Memory Alloy Torsion Actuators
,”
Mater. Des.
,
30
(
10
), pp.
4200
4210
.
21.
Campanile
,
L. F.
, and
Sachau
,
D.
,
2016
, “
The Belt-Rib Concept: A Structronic Approach to Variable Camber
,”
J. Intel. Mater. Syst. Struct.
,
11
(
3
), pp.
215
224
.
22.
Zhang
,
H.
,
Zhang
,
Z.
,
Song
,
C.
, and
Yang
,
C.
,
2021
, “
A Morphing Wing With Cellular Structure of Non-Uniform Density
,”
Smart Mater. Struct.
,
30
(
10
), p.
105005
.
23.
Airoldi
,
A.
,
Crespi
,
M.
,
Quaranti
,
G.
, and
Sala
,
G.
,
2012
, “
Design of a Morphing Airfoil With Composite Chiral Structure
,”
J. Aircraft
,
49
(
4
), pp.
1008
1019
.
24.
Sun
,
J.
,
Du
,
L.
,
Scarpa
,
F.
,
Liu
,
Y.
, and
Leng
,
J.
,
2021
, “
Morphing Wingtip Structure Based on Active Inflatable Honeycomb and Shape Memory Polymer Composite Skin: A Conceptual Work
,”
Aerosp. Sci. Technol.
,
111
, p.
106541
.
25.
Pagitz
,
M.
,
Lamacchia
,
E.
, and
Hol
,
J. M.
,
2012
, “
Pressure-Actuated Cellular Structures
,”
Bioinspir. Biomim.
,
7
(
1
), p.
016007
.
26.
You
,
H.
,
Kim
,
S.
,
Joe
,
W. Y.
, and
Yun
,
G. J.
,
2019
, “
New Concept for Aircraft Morphing Wing Skin: Design, Modeling, and Analysis
,”
AIAA J.
,
57
(
5
), pp.
1786
1792
.
27.
Lu
,
S.
,
Ahmad
,
Z.
,
Zoppi
,
M.
,
Ding
,
X.
,
Zlatanov
,
D.
, and
Molfino
,
R.
,
2016
, “
Design and Testing of a Highly Reconfigurable Fixture With Lockable Robotic Arms
,”
ASME J. Mech. Des.
,
138
(
8
), p.
085001
.
28.
Aghili
,
F.
, and
Parsa
,
K.
,
2006
, “
Design of a Reconfigurable Space Robot With Lockable Telescopic Joints
,”
Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots & Systems
,
Beijing, China
,
Oct. 9–15
, pp.
4608
4614
.
29.
Oort
,
G. V.
,
Carloni
,
R.
,
Borgerink
,
D. J.
,
Borgerink
,
D.
, and
Stramigioli
,
S.
,
2011
, “
An Energy Efficient Knee Locking Mechanism for a Dynamically Walking Robot
,”
Proceedings of the 2011 IEEE International Conference on Robotics & Automation
,
Shanghai, China
,
May 9–13
, pp.
2003
2008
.
30.
Zhao
,
Y.
,
Hao
,
G.
,
Chai
,
L.
,
Tian
,
Y.
, and
Xi
,
F.
,
2022
, “
A Compliant-Mechanism-Based Lockable Prismatic Joint for High-Load Morphing Structures
,”
Mech. Mach. Theory
,
178
, p.
105083
.
31.
Wei
,
J.
, and
Dai
,
J. S.
,
2019
, “
Lie Group Based Type Synthesis Using Transformation Configuration Space for Reconfigurable Parallel Mechanisms With Bifurcation Between Spherical Motion and Planar Motion
,”
ASME J. Mech. Des.
,
142
(
6
), p.
063302
.
32.
Yao
,
W.
,
Cannella
,
F.
, and
Dai
,
J. S.
,
2011
, “
Automatic Folding of Cartons Using a Reconfigurable Robotic System
,”
Rob. CIM-Int. Manuf.
,
27
(
3
), pp.
604
613
.
33.
Chai
,
X.
, and
Dai
,
J. S.
,
2019
, “
Three Novel Symmetric Waldron-Bricard Metamorphic and Reconfigurable Mechanisms and Their Isomerization
,”
ASME J. Mech. Rob.
,
11
(
5
), p.
051011
.
34.
Li
,
R.
,
Yao
,
Y.-A.
, and
Kong
,
X.
,
2016
, “
A Class of Reconfigurable Deployable Platonic Mechanisms
,”
Mech. Mach. Theory
,
105
, pp.
409
427
.
35.
He
,
X.
,
Kong
,
X.
,
Chablat
,
D.
,
Caro
,
S.
, and
Hao
,
G.
,
2014
, “
Kinematic Analysis of a Single-Loop Reconfigurable 7R Mechanism With Multiple Operation Modes
,”
Robotica
,
32
(
7
), pp.
1171
1188
.
36.
Li
,
R.
,
Yao
,
Y.-A.
, and
Kong
,
X.
,
2017
, “
Reconfigurable Deployable Polyhedral Mechanism Based on Extended Parallelogram Mechanism
,”
Mech. Mach. Theory
,
116
, pp.
467
480
.
37.
Moosavian
,
A.
,
Xi
,
F.
, and
Hashemi
,
S. M.
,
2014
, “
Optimal Configuration Design for the Variable Geometry Wing-Box
,”
J. Aircraft
,
51
(
3
), pp.
811
823
.
38.
Dai
,
J. S.
, and
Rees
,
J. J.
,
2002
, “
Kinematics and Mobility Analysis of Carton Folds in Packing Manipulation Based on the Mechanism Equivalent
,”
Proc. Inst. Mech. Eng. C: J. Mech.
,
216
(
10
), pp.
959
970
.
39.
Dubey
,
V. N.
, and
Dai
,
J. S.
,
2006
, “
A Packaging Robot for Complex Cartons
,”
Ind. Rob.
,
33
(
2
), pp.
82
87
.
40.
Dai
,
J. S.
, and
Rees
,
J. J.
,
1999
, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
975
982
.
41.
Dai
,
J. S.
, and
Caldwell
,
D. G.
,
2010
, “
Origami-Based Robotic Paper-and-Board Packaging for Food Industry
,”
Trends Food Sci. Tech.
,
21
(
3
), pp.
153
157
.
42.
Zhang
,
K.
,
Qiu
,
C.
, and
Dai
,
J. S.
,
2016
, “
An Extensible Continuum Robot With Integrated Origami Parallel Modules
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031010
.
43.
Zhang
,
X.
,
Kang
,
X.
, and
Li
,
B.
,
2023
, “
Origami-Inspired Design of a Single-Degree-of-Freedom Continuous Variable Bending Mechanism Based on Constraint Linkage Groups
,”
Mech. Mach. Theory
,
179
, p.
105106
.
44.
Grübler
,
M.
,
1883
, “
Allgemeine Eigenschaften der Zwangläufigen Ebenen Kinematische Kette: I
,”
Civilingenieur
,
29
, pp.
167
200
.
45.
Kutzbach
,
K.
,
1933
, “
Einzelfragen aus dem Gebiet der Maschinenteile
,”
Z. Verein Deutscher Ingenieur
,
77
, p.
1168
.
46.
Li
,
Q. C.
,
Huang
,
Z.
, and
Herve
,
J. M.
,
2004
, “
Type Synthesis of 3R2T 5-DOF Parallel Mechanisms Using the Lie Group of Displacements
,”
IEEE Trans. Rob. Autom.
,
20
(
2
), pp.
173
180
.
47.
Hao
,
G.
, and
Kong
,
X.
,
2012
, “
Design and Modeling of a Large-Range Modular XYZ Compliant Parallel Manipulator Using Identical Spatial Modules
,”
ASME J. Mech. Rob.
,
4
(
2
), p.
021009
.
48.
Hao
,
G.
, and
He
,
X.
,
2017
, “
Designing a Monolithic Tip-Tilt-Piston Flexure Manipulator
,”
Arch. Civ. Mech. Eng.
,
17
(
4
), pp.
871
879
.
49.
Hao
,
G.
,
He
,
X.
, and
Awtar
,
S.
,
2019
, “
Design and Analytical Model of a Compact Flexure Mechanism for Translational Motion
,”
Mech. Mach. Theory
,
142
, p.
103593
.
50.
Lobontiu
,
N.
,
2014
, “
Compliance-based Matrix Method for Modeling the Quasi-Static Response of Planar Serial Flexure-Hinge Mechanisms
,”
Precis. Eng.
,
38
(
3
), pp.
639
650
.
51.
Moosavian
,
A.
,
Xi
,
F.
, and
Hashemi
,
S. M.
,
2013
, “
Design and Motion Control of Fully Variable Morphing Wings
,”
J. Aircraft
,
50
(
4
), pp.
1189
1201
.
52.
Moosavian
,
A.
, and
Xi
,
F.
,
2014
, “
Design and Analysis of Reconfigurable Parallel Robots With Enhanced Stiffness
,”
Mech. Mach. Theory
,
77
, pp.
92
110
.
53.
Moosavian
,
A.
,
2014
, “
Variable Geometry Wing-Box: Toward a Robotic Morphing Wing
,”
Ph.D. dissertation
,
Ryerson University
,
Toronto, CA
.
You do not currently have access to this content.