Abstract

This paper illustrates the design and testing of an upper-body exoskeleton for the assistance of individuals with load-lifting and load-carrying tasks, and the provided assistive force can well match with the force required by the human. First, the biomechanics of the human lumbar during the squat lifting of an object is described. Next, the modeling of the exoskeleton is introduced. Additionally, the hardware design of the exoskeleton is presented. The exoskeleton is mainly composed of a back-assist mechanism and an upper extremity labor-saving mechanism, which can assist the wearer’s lumbar during the squat lifting of an object and assist the wearer’s arms to carry an object during walking, respectively. Finally, experiments are conducted to evaluate the performance of the developed upper-body exoskeleton. The experimental results demonstrate that the exoskeleton has the potential to provide assistance for individuals with manual handling tasks. An average assistive force of 44.8 N can be provided for the wearer to lift a 10-kg object. During the squat lifting of the 10-kg object, reductions of 31.86% and 28.30% of the average muscle activities of the wearer’s lumbar erector spinae and thoracic erector spinae are observed, respectively. In addition, a reduction of 23.78% of the average muscle activity of the wearer’s biceps brachii is observed during walking while carrying the 10-kg object.

References

1.
Huysamen
,
K.
,
de Looze
,
M.
,
Bosch
,
T.
,
Ortiz
,
J.
,
Toxiri
,
S.
, and
O'Sullivan
,
L. W.
,
2018
, “
Assessment of an Active Industrial Exoskeleton to Aid Dynamic Lifting and Lowering Manual Handling Tasks
,”
Appl. Ergon.
,
68
, pp.
125
131
.
2.
Zurada
,
J.
,
2012
, “
Classifying the Risk of Work Related Low Back Disorders Due to Manual Material Handling Tasks
,”
Exp. Syst. Appl.
,
39
(
12
), pp.
11125
11134
.
3.
de Looze
,
M. P.
,
Bosch
,
T.
,
Krause
,
F.
,
Stadler
,
K. S.
, and
O'Sullivan
,
L. W.
,
2016
, “
Exoskeletons for Industrial Application and Their Potential Effects on Physical Work Load
,”
Ergonomics
,
59
(
5
), pp.
671
681
.
4.
Coenen
,
P.
,
Gouttebarge
,
V.
,
van der Burght
,
A. S. A. M.
,
van Dieen
,
J. H.
,
Frings-Dresen
,
M. H. W.
,
van der Beek
,
A. J.
, and
Burdorf
,
A.
,
2014
, “
The Effect of Lifting During Work on Low Back Pain: A Health Impact Assessment Based on a Meta-Analysis
,”
Occup. Environ. Med.
,
71
(
12
), pp.
871
877
.
5.
Koopman
,
A. S.
,
Kingma
,
I.
,
Faber
,
G. S.
,
de Looze
,
M. P.
, and
van Dieen
,
J. H.
,
2019
, “
Effects of a Passive Exoskeleton on the Mechanical Loading of the Low Back in Static Holding Tasks
,”
J. Biomech.
,
83
, pp.
97
103
.
6.
de Kok
,
J.
,
Vroonhof
,
P.
,
Snijders
,
J.
,
Roullis
,
G.
,
Clarke
,
M.
,
Peereboom
,
K.
, and
van Dorst
,
P.
,
2019
, “
Work-Related Musculoskeletal Disorders: Prevalence, Costs and Demographics in the EU
,”
European Agency for Safety and Health at Work
.
7.
Faber
,
G. S.
,
Kingma
,
I.
, and
van Dieen
,
J. H.
,
2011
, “
Effect of Initial Horizontal Object Position on Peak L5/S1 Moments in Manual Lifting is Dependent on Task Type and Familiarity With Alternative Lifting Strategies
,”
Ergonomics
,
54
(
1
), pp.
72
81
.
8.
Chen
,
B.
,
Zi
,
B.
,
Wang
,
Z.
,
Qin
,
L.
, and
Liao
,
W.-H.
,
2019
, “
Knee Exoskeletons for Gait Rehabilitation and Human Performance Augmentation: A State-of-the-Art
,”
Mech. Mach. Theory
,
134
, pp.
499
511
.
9.
Font-Llagunes
,
J. M.
,
Lugrís
,
U.
,
Clos
,
D.
,
Alonso
,
F. J.
, and
Cuadrado
,
J.
,
2020
, “
Design, Control, and Pilot Study of a Lightweight and Modular Robotic Exoskeleton for Walking Assistance After Spinal Cord Injury
,”
ASME J. Mech. Rob.
,
12
(
3
), p.
031008.
10.
Chen
,
B.
,
Zi
,
B.
,
Wang
,
Z.
,
Li
,
Y.
, and
Qian
,
J.
,
2021
, “
Development of Robotic Ankle-Foot Orthosis With Series Elastic Actuator and Magneto-Rheological Brake
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
011002
.
11.
Liu
,
J.
,
Xiong
,
C.
, and
Fu
,
C.
,
2019
, “
An Ankle Exoskeleton Using a Lightweight Motor to Create High Power Assistance for Push-Off
,”
ASME J. Mech. Rob.
,
11
(
4
), p.
041001
.
12.
Chen
,
B.
,
Zheng
,
C.
,
Zi
,
B.
, and
Zhao
,
P.
,
2022
, “
Design and Implementation of Knee-Ankle Exoskeleton for Energy Harvesting and Walking Assistance
,”
Smart Mater. Struct.
,
31
(
12
), p.
125003
.
13.
Chen
,
B.
,
Shi
,
C.
,
Zheng
,
C.
,
Zi
,
B.
,
Zhao
,
P.
, and
Li
,
Y.
,
2023
, “
Development of Lower Limb Exoskeleton for Walking Assistance Using Energy Recycled From Human Knee Joint
,”
ASME J. Mech. Rob.
,
15
(
5
), p.
051007
.
14.
Park
,
H.
,
Kim
,
S.
,
Nussbaum
,
M. A.
, and
Srinivasan
,
D.
,
2022
, “
Effects of Using a Whole-Body Powered Exoskeleton During Simulated Occupational Load-Handling Tasks: A Pilot Study
,”
Appl. Ergon.
,
98
, p.
103589
.
15.
Alemi
,
M. M.
,
Geissinger
,
J.
,
Simon
,
A. A.
,
Chang
,
S. E.
, and
Asbeck
,
A. T.
,
2019
, “
A Passive Exoskeleton Reduces Peak and Mean EMG During Symmetric and Asymmetric Lifting
,”
J. Electromyogr. Kinesiol.
,
47
, pp.
25
34
.
16.
Song
,
J.
,
Zhu
,
A.
,
Tu
,
Y.
, and
Zou
,
J.
,
2021
, “
Multijoint Passive Elastic Spine Exoskeleton for Stoop Lifting Assistance
,”
Int. J. Adv. Rob. Syst.
,
18
(
6
), p.
17298814211062033
.
17.
Koopman
,
A. S.
,
Toxiri
,
S.
,
Power
,
V.
,
Kingma
,
I.
,
van Dieen
,
J. H.
,
Ortiz
,
J.
, and
de Looze
,
M. P.
,
2019
, “
The Effect of Control Strategies for an Active Back-Support Exoskeleton on Spine Loading and Kinematics During Lifting
,”
J. Biomech.
,
91
, pp.
14
22
.
18.
Simon
,
A. A.
,
Alemi
,
M. M.
, and
Asbeck
,
A. T.
,
2021
, “
Kinematic Effects of a Passive Lift Assistive Exoskeleton
,”
J. Biomech.
,
120
, p.
110317
.
19.
Koopman
,
A. S.
,
Kingma
,
I.
,
de Looze
,
M. P.
, and
van Dieen
,
J. H.
,
2020
, “
Effects of a Passive Back Exoskeleton on the Mechanical Loading of the Low-Back During Symmetric Lifting
,”
J. Biomech.
,
102
, p.
109486
.
20.
Ulrey
,
B. L.
, and
Fathallah
,
F. A.
,
2013
, “
Subject-Specific, Whole-Body Models of the Stooped Posture With a Personal Weight Transfer Device
,”
J. Electromyogr. Kinesiol.
,
23
(
1
), pp.
206
215
.
21.
Koopman
,
A. S.
,
Näf
,
M.
,
Baltrusch
,
S. J.
,
Kingma
,
I.
,
Rodriguez-Guerrero
,
C.
,
Babic
,
J.
,
de Looze
,
M. P.
, and
van Dieen
,
J. H.
,
2020
, “
Biomechanical Evaluation of a New Passive Back Support Exoskeleton
,”
J. Biomech.
,
105
, p.
109795
.
22.
Schmalz
,
T.
,
Colienne
,
A.
,
Bywater
,
E.
,
Fritzsche
,
L.
,
Gartner
,
C.
,
Bellmann
,
M.
,
Reimer
,
S.
, and
Ernst
,
M.
,
2022
, “
A Passive Back-Support Exoskeleton for Manual Materials Handling: Reduction of Low Back Loading and Metabolic Effort During Repetitive Lifting
,”
IISE Trans. Occup. Ergonom. Human Fact.
,
10
(
1
), pp.
7
20
.
23.
Smith
,
T. J.
, and
Fernie
,
G. R.
,
1991
, “
Functional Biomechanics of the Spine
,”
Spine
,
16
(
10
), pp.
1197
1203
.
24.
Straker
,
L. M.
,
2003
, “
Evidence to Support Using Squat, Semi-Squat and Stoop Techniques to Lift Low-Lying Objects
,”
Int. J. Ind. Ergonom.
,
31
(
3
), pp.
149
160
.
25.
Saraceni
,
N.
,
Campbell
,
A.
,
Kent
,
P.
,
Ng
,
L.
,
Straker
,
L.
, and
O'Sullivan
,
P.
,
2021
, “
Exploring Lumbar and Lower Limb Kinematics and Kinetics for Evidence That Lifting Technique is Associated With LBP
,”
PLoS One
,
16
(
7
), p.
e0254241
.
26.
Hwang
,
S.
,
Kim
,
Y.
, and
Kim
,
Y.
,
2008
, “
Joint Kinetics and Lumbar Curvatures During Symmetric Lifting: Squat and Stoop
,”
Proceedings of BMEI
,
Sanya, Hainan, China
,
May 27–30
, pp.
818
822
.
27.
Toxiri
,
S.
,
Ortiz
,
J.
,
Masood
,
J.
,
Fernandez
,
J.
,
Mateos
,
L. A.
, and
Caldwell
,
D. G.
,
2015
, “
A Wearable Device for Reducing Spinal Loads During Lifting Tasks: Biomechanics and Design Concepts
,”
Proceedings of ROBIO
,
Zhuhai, Guangdong, China
,
Dec. 6–9
, pp.
2295
2300
.
28.
Hwang
,
S.
,
Kim
,
Y.
, and
Kim
,
Y.
,
2009
, “
Lower Extremity Joint Kinetics and Lumbar Curvature During Squat and Stoop Lifting
,”
BMC Musculoskel. Disord.
,
10
(
1
), p.
15
.
29.
Bazrgari
,
B.
,
Shirazi-Adl
,
A.
, and
Arjmand
,
N.
,
2007
, “
Analysis of Squat and Stoop Dynamic Liftings: Muscle Forces and Internal Spinal Loads
,”
Eur. Spine J.
,
16
(
5
), pp.
687
699
.
30.
Heo
,
U.
,
Kim
,
S. J.
, and
Kim
,
J.
,
2020
, “
Backdrivable and Fully-Portable Pneumatic Back Support Exoskeleton for Lifting Assistance
,”
IEEE Rob. Autom. Lett.
,
5
(
2
), pp.
2047
2053
.
31.
Wei
,
W.
,
Zha
,
S.
,
Xia
,
Y.
,
Gu
,
J.
, and
Lin
,
X.
,
2020
, “
A Hip Active Assisted Exoskeleton That Assists the Semi-Squat Lifting
,”
Appl. Sci.
,
10
(
7
), p.
2424
.
32.
Samper-Escudero
,
J. L.
,
Giménez-Fernandez
,
A.
,
Sánchez-Urán
,
M. Á.
, and
Ferre
,
M.
,
2020
, “
A Cable-Driven Exosuit for Upper Limb Flexion Based on Fibres Compliance
,”
IEEE Access
,
8
, pp.
153297
153310
.
33.
Kim
,
Y. G.
,
Xiloyannis
,
M.
,
Accoto
,
D.
, and
Masia
,
L.
,
2018
, “
Development of a Soft Exosuit for Industrial Applications
,”
Proceedings of IEEE Biorob
,
Enschede, Netherlands
,
Aug. 26–29
, pp.
324
329
.
34.
Fu
,
J.
,
Hosseini
,
S. M.
,
Simpson
,
R.
,
Brooks
,
A.
,
Huff
,
R.
, and
Park
,
J.-H.
,
2022
, “
A Bilateral Six Degree of Freedom Cable-Driven Upper Body Exosuit
,”
Proceedings of IEEE ICMA
,
Guilin, Guangxi, China
,
Aug. 7–10
, pp.
617
623
.
You do not currently have access to this content.