Abstract

The notched continuum mechanism is particularly suitable for natural orifice transluminal surgery benefiting from its small size and hollow structure. However, the widely used kinematic model based on constant curvature assumption does not reveal the actual deformation of the continuum mechanism, and its control accuracy is unstable, while the general mechanics model has the problem that the tension of the distal driving cable is difficult to measure. In this paper, a nonconstant curvature static model for a bidirectional V-shaped notched continuum mechanism is presented. The deformation of each part of the continuum mechanism from the distal end to the proximal end is analyzed in turn. The tension loss of the driving cable caused by the contact with the continuum mechanism is modeled using the capstan equation. The recursive equation between the deformation of each part of the continuum mechanism from the proximal end is derived, which can be solved numerically. The bending state of the continuum mechanism can then be estimated when only the tension of the proximal flexible cable is known. The model is experimentally verified by driving the continuum mechanism to move at a very low speed. The experiment results show that the estimation effect of the proposed model is significantly improved compared with that of the constant curvature model.

References

1.
Housmans
,
S.
,
Stuart
,
A.
,
Bosteels
,
J.
,
Deprest
,
J.
, and
Baekelandt
,
J.
,
2022
, “
Standardized 10-Step Approach for Successfully Performing a Hysterectomy via Vaginal Natural Orifice Transluminal Endoscopic Surgery
,”
Acta Obstet. Gynecol. Scand.
,
101
(
6
), pp.
649
656
.
2.
Lima
,
E.
,
Rolanda
,
C.
,
Autorino
,
R.
, and
Correia-Pinto
,
J.
,
2010
, “
Experimental Foundation for Natural Orifice Transluminal Endoscopic Surgery and Hybrid Natural Orifice Transluminal Endoscopic Surgery
,”
BJU Int.
,
106
(
6b
), pp.
913
918
.
3.
Tyson
,
M. D.
, and
Humphreys
,
M. R.
,
2014
, “
Urological Applications of Natural Orifice Transluminal Endoscopic Surgery
,”
Nat. Rev. Urol.
,
11
(
6
), pp.
324
332
.
4.
Amanov
,
E.
,
Ropella
,
D. S.
,
Nimmagadda
,
N.
,
Ertop
,
T. E.
,
Mitchell
,
J. E.
,
Kavoussi
,
N. L.
,
Hendrick
,
R. J.
, et al
,
2020
, “
Transurethral Anastomosis After Transurethral Radical Prostatectomy: a Phantom Study on Intraluminal Suturing With Concentric Tube Robots
,”
IEEE Trans. Med. Rob. Bionics
,
2
(
4
), pp.
578
581
.
5.
Burgner-Kahrs
,
J.
,
Rucker
,
D. C.
, and
Choset
,
H.
,
2015
, “
Continuum Robots for Medical Applications: A Survey
,”
IEEE Trans. Rob.
,
31
(
6
), pp.
1261
1280
.
6.
Eastwood
,
K. W.
,
Francis
,
P.
,
Azimian
,
H.
,
Swarup
,
A.
,
Looi
,
T.
,
Drake
,
J. M.
, and
Naguib
,
H. E.
,
2018
, “
Design of a Contact-Aided Compliant Notched-Tube Joint for Surgical Manipulation in Confined Workspaces
,”
ASME J. Mech. Rob.
,
10
(
1
), p.
015001
.
7.
Thomas
,
T. L.
,
Kalpathy Venkiteswaran
,
V.
,
Ananthasuresh
,
G. K.
, and
Misra
,
S.
,
2021
, “
Surgical Applications of Compliant Mechanisms: A Review
,”
ASME J. Mech. Rob.
,
13
(
2
), p.
020801
.
8.
Chitalia
,
Y.
,
Jeong
,
S.
,
Deaton
,
N.
,
Chern
,
J. J.
, and
Desai
,
J. P.
,
2020
, “
Design and Kinematics Analysis of a Robotic Pediatric Neuroendoscope Tool Body
,”
IEEE/ASME Trans. Mechatron.
,
25
(
2
), pp.
985
995
.
9.
Feng
,
F.
,
Hong
,
W.
, and
Xie
,
L.
,
2020
, “
Design of 3D-Printed Flexible Joints With Presettable Stiffness for Surgical Robots
,”
IEEE Access
,
8
, pp.
79573
79585
.
10.
Wang
,
X.
,
Ding
,
Y.
,
Zeng
,
L.
,
Zhu
,
C.
,
Wu
,
B.
, and
Xu
,
K.
,
2023
, “
Kinetostatic Modeling of Continuum Delta Robot With Variable Curvature Continuum Joints
,”
ASME J. Mech. Rob.
,
15
(
3
), p.
031005
.
11.
Wang
,
Z.
,
Bao
,
S.
,
Wang
,
D.
,
Qian
,
S.
,
Zhang
,
J.
, and
Hai
,
M.
,
2023
, “
Design of a Novel Flexible Robotic Laparoscope Using a Two Degrees-of-Freedom Cable-Driven Continuum Mechanism With Major Arc Notches
,”
ASME J. Mech. Rob.
,
15
(
6
), p.
064502
.
12.
York
,
P. A.
,
Swaney
,
P. J.
,
Gilbert
,
H. B.
, and
Webster
,
R. J.
,
2015
, “
A Wrist for Needle-Sized Surgical Robots
,”
Proceedings of the 2015 IEEE International Conference on Robotics and Automation
,
Seattle, WA
,
May 26–30
, pp.
1776
1781
.
13.
Wang
,
H.
,
Du
,
Z.
,
Yang
,
W.
,
Yan
,
Z. Y.
, and
Wang
,
X.
,
2019
, “
Variable Stiffness Model Construction and Simulation Verification of Coupled Notch Continuum Manipulator
,”
IEEE Access
,
7
, pp.
154761
154769
.
14.
Della Santina
,
C.
,
Bicchi
,
A.
, and
Rus
,
D.
,
2020
, “
On an Improved State Parametrization for Soft Robots With Piecewise Constant Curvature and Its Use in Model Based Control
,”
IEEE Rob. Autom. Lett.
,
5
(
2
), pp.
1001
1008
.
15.
Wang
,
F.
,
Wang
,
H.
,
Luo
,
J.
,
Kang
,
X.
,
Yu
,
H.
,
Lu
,
H.
,
Dong
,
Y.
, and
Jia
,
X.
,
2021
, “
Fiora: A Flexible Tendon-Driven Continuum Manipulator for Laparoscopic Surgery
,”
IEEE Rob. Autom. Lett.
,
7
(
2
), pp.
1166
1173
.
16.
Orekhov
,
A. L.
,
Ahronovich
,
E. Z.
, and
Simaan
,
N.
,
2023
, “
Lie Group Formulation and Sensitivity Analysis for Shape Sensing of Variable Curvature Continuum Robots With General String Encoder Routing
,”
IEEE Trans. Rob.
,
39
(
3
), pp.
3308
3324
.
17.
Gonthina
,
P. S.
,
Kapadia
,
A. D.
,
Godage
,
I. S.
, and
Walker
,
I. D.
,
2019, May
, “
Modeling Variable Curvature Parallel Continuum Robots Using Euler Curves
,”
Proceedings of the 2019 IEEE International Conference on Robotics and Automation
,
Montreal, QC, Canada
,
May 20–24
, pp.
1679
1685
.
18.
Du
,
Z.
,
Yang
,
W.
, and
Dong
,
W.
,
2015
, “
Kinematics Modeling of a Notched Continuum Manipulator
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041017
.
19.
Song
,
Y.
,
Wang
,
S.
,
Luo
,
X.
, and
Shi
,
C.
,
2022
, “
Design and Optimization of a 3D Printed Distal Flexible Joint for Endoscopic Surgery
,”
IEEE Trans. Med. Rob. Bionics
,
4
(
1
), pp.
38
49
.
20.
Tummers
,
M.
,
Lebastard
,
V.
,
Boyer
,
F.
,
Troccaz
,
J.
,
Rosa
,
B.
, and
Chikhaoui
,
M. T.
,
2023
, “
Cosserat Rod Modeling of Continuum Robots From Newtonian and Lagrangian Perspectives
,”
IEEE Trans. Rob.
,
39
(
3
), pp.
2360
2378
.
21.
Wu
,
K.
,
Zheng
,
G.
, and
Chen
,
G.
,
2023
, “
Extending Timoshenko Beam Theory for Large Deflections in Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
15
(
6
), p.
061012
.
22.
Gao
,
A.
,
Murphy
,
R. J.
,
Liu
,
H.
,
Iordachita
,
I. I.
, and
Armand
,
M.
,
2016
, “
Mechanical Model of Dexterous Continuum Manipulators with Compliant Joints and Tendon/External Force Interactions
,”
IEEE/ASME Trans. Mechatron.
,
22
(
1
), pp.
465
475
.
23.
Zeng
,
W.
,
Yan
,
J.
,
Yan
,
K.
,
Huang
,
X.
,
Wang
,
X.
, and
Cheng
,
S. S.
,
2021
, “
Modeling a Symmetrically-Notched Continuum Neurosurgical Robot With Non-Constant Curvature and Superelastic Property
,”
IEEE Rob. Autom. Lett.
,
6
(
4
), pp.
6489
6496
.
24.
Legrand
,
J.
,
Ourak
,
M.
,
Vandebroek
,
T.
, and
Vander Poorten
,
E.
,
2021
, “
A Large Displacement Model for Superelastic Material Side-Notched Tube Instruments
,”
Int. J. Mech. Sci.
,
197
, p.
106329
.
25.
Pacheco
,
N. E.
,
Gafford
,
J. B.
,
Atalla
,
M. A.
,
Webster III
,
R. J.
, and
Fichera
,
L.
,
2021
, “
Beyond Constant Curvature: A new Mechanics Model for Unidirectional Notched-Tube Continuum Wrists
,”
J. Med. Rob. Res.
,
6
(
01n02
), p.
2140004
.
26.
Gao
,
A.
,
Zou
,
Y.
,
Wang
,
Z.
, and
Liu
,
H.
2017
, “
A General Friction Model of Discrete Interactions for Tendon Actuated Dexterous Manipulators
,”
ASME J. Mech. Rob.
,
9
(
4
), p.
041019
.
27.
Li
,
J.
,
Zhou
,
Y.
,
Wang
,
C.
,
Wang
,
Z.
, and
Liu
,
H.
,
2020
, “
A Model-Based Method for Predicting the Shapes of Planar Single-Segment Continuum Manipulators With Consideration of Friction and External Force
,”
ASME J. Mech. Rob.
,
12
(
4
), p.
041013
.
28.
Li
,
J.
,
Zhang
,
F.
,
Yang
,
Z.
,
Jiang
,
Z.
,
Wang
,
Z.
, and
Liu
,
H.
,
2022
, “
Shape Sensing for Continuum Robots by Capturing Passive Tendon Displacements With Image Sensors
,”
IEEE Rob. Autom. Lett.
,
7
(
2
), pp.
3130
3137
.
29.
Sefati
,
S.
,
Gao
,
C.
,
Iordachita
,
I.
,
Taylor
,
R. H.
, and
Armand
,
M.
,
2020
, “
Data-Driven Shape Sensing of a Surgical Continuum Manipulator Using an Uncalibrated Fiber Bragg Grating Sensor
,”
IEEE Sens. J.
,
21
(
3
), pp.
3066
3076
.
30.
Cao
,
Y.
,
Feng
,
F.
,
Liu
,
Z.
, and
Xie
,
L.
,
2022
, “
Closed-Loop Trajectory Tracking Control of a Cable-Driven Continuum Robot With Integrated Draw Tower Grating Sensor Feedback
,”
ASME J. Mech. Rob.
,
14
(
6
), p.
061004
.
31.
Wang
,
Z.
,
Bao
,
S.
,
Zi
,
B.
,
Jia
,
Z.
, and
Yu
,
X.
,
2024
, “
Development of a Novel 4-DOF Flexible Endoscopic Robot Using Cable-Driven Multisegment Continuum Mechanisms
,”
ASME J. Mech. Rob.
,
16
(
3
), p.
031011
.
32.
Wang
,
Z.
,
Wei
,
X.
,
Yu
,
X.
,
Jia
,
Z.
,
Qian
,
S.
, and
Wang
,
D.
,
2023
, “
Data-Based Shape Self-Sensing of a Cable-Driven Notched Continuum Mechanism Using Multi-Dimensional Intrinsic Force Information for Surgical Robot
,”
ASME J. Mech. Rob.
You do not currently have access to this content.