Abstract

The accurate shape-sensing capability of the continuum mechanism is fundamental to improve and guarantee the motion control accuracy and safety of continuum surgical robots. This paper presents a data-based shape self-sensing method for a cable-driven notched continuum mechanism using its multidimensional intrinsic force information, which mainly includes the multidimensional forces/torques and driving cable tensions. The nonlinear hysteresis compensation and the shape estimation of the notched continuum mechanism play significant roles in its motion control. Calibration compensation of the notched continuum mechanism is performed based on kinematic modeling to improve the accuracy of its preliminary motion control. The hysteresis characteristics of the continuum mechanism are analyzed, modeled, and compensated through considering the abundant dynamic motion experiments, such that a feedforward hysteresis compensation controller is designed to improve the tracking control performance of the continuum mechanism. Based on the kinematic calibration and hysteresis compensation, combined with the motor displacement, driving cable tensions, and six-dimensional forces/torques information of the continuum mechanism, a data-based shape self-sensing method based on particle swarm optimization back propagation neural network (PSO-BPNN) is proposed in this study. Experimental results show that this method can effectively estimate the loaded and unloaded shape of the notched continuum mechanism, which provides a new approach for the shape reconstruction of cable-driven notched continuum surgical robots.

References

1.
Noh
,
G. T.
,
Chung
,
S. S.
,
Lee
,
R. A.
, and
Kim
,
K. H.
,
2021
, “
Robotic Single-Incision Right Hemicolectomy With Extended Lymphadenectomy Using the da Vinci SP Surgical Platform
,”
J. Minim. Invasive Surg.
,
21
(
2
), pp.
109
112
.
2.
Chen
,
Y.
,
Zhang
,
C.
,
Wu
,
Z.
,
Zhao
,
J.
,
Yang
,
B.
,
Huang
,
J.
,
Luo
,
Q.
,
Wang
,
L.
, and
Xu
,
K.
,
2021
, “
The SHURUI System: A Modular Continuum Surgical Robotic Platform for Multiport, Hybrid-Port, and Single-Port Procedures
,”
IEEE-ASME Trans. Mech.
,
27
(
5
), pp.
3186
3197
.
3.
Chen
,
G.
,
Wang
,
J.
, and
Wang
,
H.
,
2018
, “
A New Type of Planar Two Degree of Freedom Remote Center-of-Motion Mechanism Inspired by the Peaucellier-Lipkin Straight-Line Linkage
,”
ASME J. Mech. Des.
,
141
(
1
), p.
015001
.
4.
Thomas
,
T. L.
,
Kalpathy Venkiteswaran
,
V.
,
Ananthasuresh
,
G. K.
, and
Misra
,
S.
,
2021
, “
Surgical Applications of Compliant Mechanisms: A Review
,”
ASME J. Mech. Rob.
,
13
(
2
), p.
020801
.
5.
Bhattacherjee
,
S.
,
Chatterjee
,
S.
, and
Bhaumik
,
S.
,
2022
, “
Carbon Nanotube/Glycerol Embedded Low Cost Flexible Sensor for Large Deflection Sensing of Continuum Manipulators
,”
Meas. Sci. Technol.
,
33
(
4
), p.
045107
.
6.
Thomas
,
T. L.
,
Venkiteswaran
,
V. K.
,
Ananthasuresh
,
G. K.
, and
Misra
,
S.
,
2020
, “
A Monolithic Compliant Continuum Manipulator: A Proof-of-Concept Study
,”
ASME J. Mech. Rob.
,
12
(
6
), p.
061006
.
7.
Li
,
J.
,
Zhou
,
Y.
,
Wang
,
C.
,
Wang
,
Z.
, and
Liu
,
H.
,
2020
, “
A Model-Based Method for Predicting the Shapes of Planar Single-Segment Continuum Manipulators With Consideration of Friction and External Force
,”
ASME J. Mech. Rob.
,
12
(
4
), p.
041013
.
8.
Burgner-Kahrs
,
J.
,
Rucker
,
D. C.
, and
Choset
,
H.
,
2015
, “
Continuum Robots for Medical Applications: A Survey
,”
IEEE Trans. Rob.
,
31
(
6
), pp.
1261
1280
.
9.
Wang
,
Z.
,
Bao
,
S.
,
Wang
,
D.
,
Qian
,
S.
,
Zhang
,
J.
, and
Hai
,
M.
,
2023
, “
Design of a Novel Flexible Robotic Laparoscope Using a Two Degrees-of-Freedom Cable-Driven Continuum Mechanism With Major Arc Notches
,”
ASME J. Mech. Rob.
,
15
(
6
), p.
064502
.
10.
Wang
,
Z.
,
Bao
,
S.
,
Zi
,
B.
,
Jia
,
Z.
, and
Yu
,
X.
,
2023
, “
Development of a Novel 4-DOF Flexible Endoscopic Robot Using Cable-Driven Multisegment Continuum Mechanisms
,”
ASME J. Mech. Rob.
,
16
(
3
), p.
031011
.
11.
Zhang
,
T.
,
Ping
,
Z.
, and
Zuo
,
S.
,
2021
, “
Miniature Continuum Manipulator With Three Degrees-of-Freedom Force Sensing for Retinal Microsurgery
,”
ASME J. Mech. Rob.
,
13
(
4
), p.
041002
.
12.
Wang
,
X.
,
Ding
,
Y.
,
Zeng
,
L.
,
Zhu
,
C.
,
Wu
,
B.
, and
Xu
,
K.
,
2023
, “
Kinetostatic Modeling of Continuum Delta Robot With Variable Curvature Continuum Joints
,”
ASME J. Mech. Rob.
,
15
(
3
), p.
031005
.
13.
Ma
,
J.
,
Sefati
,
S.
,
Taylor
,
R. H.
, and
Armand
,
M.
,
2021
, “
An Active Steering Hand-Held Robotic System for Minimally Invasive Orthopaedic Surgery Using a Continuum Manipulator
,”
IEEE Rob. Autom. Lett.
,
6
(
2
), pp.
1622
1629
.
14.
Du
,
Z.
,
Yang
,
W.
, and
Dong
,
W.
,
2015
, “
Kinematics Modeling and Performance Optimization of a Kinematic-Mechanics Coupled Continuum Manipulator
,”
Mechatronics
,
6
(
2
), pp.
196
204
.
15.
Dong
,
X.
,
Raffles
,
M.
,
Cobos-Guzman
,
S.
,
Axinte
,
D.
, and
Kell
,
J.
,
2016
, “
A Novel Continuum Robot Using Twin-Pivot Compliant Joints: Design, Modeling, and Validation
,”
ASME J. Mech. Rob.
,
8
(
2
), pp.
196
204
.
16.
Wu
,
Z.
,
Li
,
Q.
,
Zhao
,
J.
,
Gao
,
J.
, and
Xu
,
K.
,
2019
, “
Design of a Modular Continuum-Articulated Laparoscopic Robotic Tool With Decoupled Kinematics
,”
IEEE Rob. Autom. Lett.
,
4
(
4
), pp.
3545
3552
.
17.
Burgner-Kahrs
,
J.
,
2015
, “
Task-Specific Design of Tubular Continuum Robots for Surgical Applications
,”
Soft Robotics: Transferring Theory to Application
,
Stuttgart, Germany
,
June 23–24
, pp.
222
230
.
18.
Amanov
,
E.
,
Ropella
,
D. S.
,
Nimmagadda
,
N.
,
Ertop
,
T. E.
,
Mitchell
,
J. E.
,
Kavoussi
,
N. L.
,
Hendrick
,
R. J.
, et al
,
2020
, “
Transurethral Anastomosis After Transurethral Radical Prostatectomy: A Phantom Study on Intraluminal Suturing With Concentric Tube Robots
,”
IEEE Trans. Med. Robot. Bionics
,
2
(
4
), pp.
578
581
.
19.
Wang
,
L.
,
Giudice
,
G. D.
, and
Simaan
,
N.
,
2019
, “
Simplified Kinematics of Continuum Robot Equilibrium Modulation via Moment Coupling Effects and Model Calibration
,”
ASME J. Mech. Rob.
,
11
(
5
), p.
051013
.
20.
Lee
,
D. H.
,
Kim
,
Y. H.
,
Collins
,
J.
,
Kapoor
,
A. D.
,
Kwon
,
S.
, and
Mansi
,
T.
,
2021
, “
Non-Linear Hysteresis Compensation of a Tendon-Sheath-Driven Robotic Manipulator Using Motor Current
,”
IEEE Rob. Autom. Lett.
,
6
(
2
), pp.
1224
1231
.
21.
Xu
,
W.
,
Foong
,
R. P. L.
, and
Ren
,
H.
,
2015
, “
Maker Based Shape Tracking of a Flexible Serpentine Manipulator
,”
2015 IEEE International Conference on Information and Automation
,
Lijiang, China
,
Aug. 08–10
, pp.
637
642
.
22.
Shi
,
C.
,
Luo
,
X.
,
Qi
,
P.
,
Li
,
T.
,
Song
,
S.
,
Najdovski
,
Z.
,
Fukuda
,
T.
, and
Ren
,
H.
,
2016
, “
Shape Sensing Techniques for Continuum Robots in Minimally Invasive Surgery: A Survey
,”
IEEE Trans. Bio-Med. Eng.
,
64
(
8
), pp.
1665
1678
.
23.
Tully
,
S.
, and
Choset
,
H.
,
2016
, “
A Filtering Approach for Image-Guided Surgery With a Highly Articulated Surgical Snake Robot
,”
IEEE Trans. Bio-Med. Eng.
,
63
(
2
), pp.
392
402
.
24.
Song
,
S.
,
Li
,
Z.
,
Yu
,
H.
, and
Ren
,
H.
,
2015
, “
Electromagnetic Positioning for Tip Tracking and Shape Sensing of Flexible Robots
,”
IEEE Sens. J.
,
15
(
8
), pp.
4565
4575
.
25.
Chitalia
,
Y.
,
Deaton
,
N. J.
,
Jeong
,
S.
,
Rahman
,
N.
, and
Desai
,
J. P.
,
2020
, “
Towards FBG-Based Shape Sensing for Micro-Scale and Meso-Scale Continuum Robots With Large Deflection
,”
IEEE Rob. Autom. Lett.
,
5
(
2
), pp.
1712
1719
.
26.
Sefati
,
S.
,
Gao
,
C.
,
Iordachita
,
I.
,
Taylor
,
R. H.
, and
Armand
,
M.
,
2021
, “
Data-Driven Shape Sensing of a Surgical Continuum Manipulator Using an Uncalibrated Fiber Bragg Grating Sensor
,”
IEEE Sens. J.
,
21
(
3
), pp.
3066
3076
.
27.
Giudice
,
G. D.
,
Orekhov
,
A. L.
,
Shen
,
J. H.
,
Joos
,
K. M.
, and
Simaan
,
N.
,
2021
, “
Investigation of Micromotion Kinematics of Continuum Robots for Volumetric OCT and OCT-Guided Visual Servoing
,”
IEEE/ASME Trans. Mechatron.
,
26
(
5
), pp.
2604
2615
.
28.
Cao
,
Y.
,
Liu
,
Z.
,
Yu
,
H.
,
Hong
,
W.
, and
Xie
,
L.
,
2022
, “
Spatial Shape Sensing of a Multisection Continuum Robot With Integrated DTG Sensor for Maxillary Sinus Surgery
,”
IEEE/ASME Trans. Mechatron.
,
28
(
2
), pp.
715
725
.
29.
Li
,
J.
,
Zhang
,
F.
,
Yang
,
Z.
,
Jiang
,
Z.
,
Wang
,
Z.
, and
Liu
,
H.
,
2022
, “
Shape Sensing for Continuum Robots by Capturing Passive Tendon Displacements With Image Sensors
,”
IEEE Rob. Autom. Lett.
,
7
(
2
), pp.
3130
3137
.
30.
Guo
,
H.
,
Ju
,
F.
,
Bai
,
D.
,
Wei
,
X.
,
Wang
,
L.
, and
Chen
,
B.
,
2023
, “
Shape Reconstruction for Continuum Robot Based on Pythagorean Hodograph–Bézier Curve With IMU and Vision Sensors
,”
IEEE Sens. J.
,
23
(
8
), pp.
8535
8544
.
31.
Eastwood
,
K. W.
,
Francis
,
P.
,
Azimian
,
H.
,
Swarup
,
A.
,
Looi
,
T.
,
Drake
,
J. M.
, and
Naguib
,
H. E.
,
2018
, “
Design of a Contact-Aided Compliant Notched-Tube Joint for Surgical Manipulation in Confined Workspaces
,”
ASME J. Mech. Rob.
,
10
(
1
), p.
015001
.
32.
Wu
,
Z.
,
Zhu
,
C.
,
Ding
,
Y.
,
Wang
,
Y.
,
Xu
,
B.
, and
Xu
,
K.
,
2022
, “
A Robotic Surgical Tool With Continuum Wrist, Kinematically Optimized Curved Stem, and Collision Avoidance Kinematics for Single Port Procedure
,”
Mech. Mach. Theory
,
173
, p.
104863
.
33.
Zeng
,
W.
,
Yan
,
J.
,
Yan
,
K.
,
Huang
,
X.
,
Wang
,
X.
, and
Cheng
,
S. S.
,
2021
, “
Modeling A Symmetrically-Notched Continuum Neurosurgical Robot With Non-Constant Curvature and Superelastic Property
,”
IEEE Rob. Autom. Lett.
,
6
(
4
), pp.
6489
6496
.
34.
Wang
,
Z.
,
Wang
,
D.
,
Chen
,
B.
,
Yu
,
L.
,
Qian
,
J.
, and
Zi
,
B.
,
2019
, “
A Clamping Force Estimation Method Based on a Joint Torque Disturbance Observer Using PSO-BPNN for Cable-Driven Surgical Robot end-Effectors
,”
Sensors
,
19
(
23
), p.
5291
.
You do not currently have access to this content.