Abstract

The deployment of manipulators enhances the versatility and flexibility of unmanned aerial vehicles (UAVs) in aerial physical interaction tasks but also challenges their designs and controls due to variations in the center of gravity (CoG), moment of inertia, and reaction wrenches. This work presents a novel design of a two-degree-of-freedom dual-tool manipulator with invariant-center-of-gravity (ICoG) property. The ICoG conditions are strictly deduced, and a practical optimization-based parameter tuning method is proposed. A novel adaptive extended state observer (AESO)-based impedance control method is developed with actuator dynamics taken into account. The AESO can estimate and compensate for both the lumped disturbance, including the influences of moment-of-inertia variation and counter torque, and the unmeasurable states for the controller. In addition, a switching adaptive law is proposed to attenuate the peaking phenomenon under high observer gains. The impedance controller is designed using an auxiliary impedance tracking error to overcome the difficulty of the increased system order. The Lyapunov approach is used to evaluate the stability of the entire system. The proposed approach is implemented on a fully actuated hexarotor with a prototype of the ICoG manipulator. Comparative experiments are conducted to validate the effectiveness and advantages of the proposed design and control methods.

References

1.
Ollero
,
A.
,
Tognon
,
M.
,
Suarez
,
A.
,
Lee
,
D.
, and
Franchi
,
A.
,
2021
, “
Past, Present, and Future of Aerial Robotic Manipulators
,”
IEEE Trans. Robot.
,
38
(
1
), pp.
626
645
.
2.
Kocer
,
B. B.
,
Tjahjowidodo
,
T.
,
Pratama
,
M.
, and
Seet
,
G. G. L.
,
2019
, “
Inspection-While-Flying: An Autonomous Contact-Based Nondestructive Test Using UAV-Tools
,”
Autom. Constr.
,
106
, p.
102895
.
3.
Kutia
,
J. R.
,
Stol
,
K. A.
, and
Xu
,
W.
,
2018
, “
Aerial Manipulator Interactions With Trees for Canopy Sampling
,”
IEEE/ASME Trans. Mechatron.
,
23
(
4
), pp.
1740
1749
.
4.
McArthur
,
D. R.
,
Chowdhury
,
A. B.
, and
Cappelleri
,
D. J.
,
2018
, “
Design of the Interacting-Boomcopter Unmanned Aerial Vehicle for Remote Sensor Mounting
,”
ASME J. Mech. Rob.
,
10
(
2
), p.
025001
.
5.
McArthur
,
D. R.
,
Chowdhury
,
A. B.
, and
Cappelleri
,
D. J.
,
2020
, “
Autonomous Door Opening With the Interacting-Boomcopter Unmanned Aerial Vehicle
,”
ASME J. Mech. Rob.
,
12
(
2
), p.
021102
.
6.
Heredia
,
G.
,
Jimenez-Cano
,
A.
,
Sanchez
,
I.
,
Llorente
,
D.
,
Vega
,
V.
,
Braga
,
J.
,
Acosta
,
J.
, and
Ollero
,
A.
,
2014
, “
Control of a Multirotor Outdoor Aerial Manipulator
,”
2014 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Chicago, IL
,
Sept. 14–18
, IEEE, pp.
3417
3422
.
7.
Sheng
,
X.
,
Ma
,
Z.
,
Zhang
,
N.
, and
Dong
,
W.
,
2021
, “
Aerial Contact Manipulation With Soft End-Effector Compliance and Inverse Kinematic Compensation
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
011023
.
8.
Ollero
,
A.
,
Heredia
,
G.
,
Franchi
,
A.
,
Antonelli
,
G.
,
Kondak
,
K.
,
Sanfeliu
,
A.
,
Viguria
,
A.
, et al.
2018
, “
The Aeroarms Project: Aerial Robots With Advanced Manipulation Capabilities for Inspection and Maintenance
,”
IEEE Robot. Autom. Mag.
,
25
(
4
), pp.
12
23
.
9.
Meng
,
X.
,
He
,
Y.
,
Li
,
Q.
,
Gu
,
F.
,
Yang
,
L.
,
Yan
,
T.
, and
Han
,
J.
,
2018
, “
Contact Force Control of an Aerial Manipulator in Pressing an Emergency Switch Process
,”
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
,
Oct. 1–5
, IEEE, pp.
2107
2113
.
10.
Ruggiero
,
F.
,
Trujillo
,
M. A.
,
Cano
,
R.
,
Ascorbe
,
H.
,
Viguria
,
A.
,
Peréz
,
C.
,
Lippiello
,
V.
,
Ollero
,
A.
, and
Siciliano
,
B.
,
2015
, “
A Multilayer Control for Multirotor Uavs Equipped With a Servo Robot Arm
,”
2015 IEEE International Conference on Robotics and Automation (ICRA)
,
Seattle, WA
,
May 26–30
, IEEE, pp.
4014
4020
.
11.
AlAkhras
,
A.
,
Sattar
,
I. H.
,
Alvi
,
M.
,
Qanbar
,
M. W.
,
Jaradat
,
M. A.
, and
Alkaddour
,
M.
,
2022
, “
The Design of a Lightweight Cable Aerial Manipulator With a Cog Compensation Mechanism for Construction Inspection Purposes
,”
Appl. Sci.
,
12
(
3
), p.
1173
.
12.
Abuzayed
,
I.
,
Itani
,
A. R.
,
Ahmed
,
A.
,
Alkharaz
,
M.
,
Jaradat
,
M. A.
, and
Romdhane
,
L.
,
2020
, “
Design of Lightweight Aerial Manipulator With a Cog Compensation Mechanism
,”
2020 Advances in Science and Engineering Technology International Conferences (ASET)
,
Dubai, United Arab Emirates
,
Feb. 4–Apr. 9
, IEEE, pp.
1
5
.
13.
Hafez
,
O. M. A.
,
Jaradat
,
M. A.
, and
Hatamleh
,
K. S.
,
2017
, “
Stable Under-Actuated Manipulator Design for Mobile Manipulating Unmanned Aerial Vehicle (MM-UAV)
,”
2017 7th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO)
,
Sharjah, United Arab Emirates
,
Apr. 4–6
, IEEE, pp.
1
6
.
14.
Peng
,
R.
,
Chen
,
X.
, and
Lu
,
P.
,
2021
, “
A Motion Decoupled Aerial Robotic Manipulator for Better Inspection
,”
2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Prague, Czech Republic
,
Sept. 27–Oct. 1
, IEEE, pp.
4207
4213
.
15.
Imanberdiyev
,
N.
,
Sood
,
S.
,
Kircali
,
D.
, and
Kayacan
,
E.
,
2022
, “
Design, Development and Experimental Validation of a Lightweight Dual-Arm Aerial Manipulator With a CoG Balancing Mechanism
,”
Mechatronics
,
82
, p.
102719
.
16.
Santamaria-Navarro
,
A.
,
Grosch
,
P.
,
Lippiello
,
V.
,
Solà
,
J.
, and
Andrade-Cetto
,
J.
,
2017
, “
Uncalibrated Visual Servo for Unmanned Aerial Manipulation
,”
IEEE/ASME Trans. Mechatron.
,
22
(
4
), pp.
1610
1621
.
17.
Sarkisov
,
Y. S.
,
Kim
,
M. J.
,
Bicego
,
D.
,
Tsetserukou
,
D.
,
Ott
,
C.
,
Franchi
,
A.
, and
Kondak
,
K.
,
2019
, “
Development of Sam: Cable-Suspended Aerial Manipulator
,”
2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, QC, Canada
,
May 20–24
, IEEE, pp.
5323
5329
.
18.
Luxton
,
C.
,
Sandino
,
J.
,
Vanegas
,
F.
, and
Gonzalez
,
F.
,
2022
, “
Design and Flight Testing of a Two Dof Decoupled Pantograph Aerial Manipulator for Commercial UAVs
,”
2022 International Conference on Unmanned Aircraft Systems (ICUAS)
,
Dubrovnik, Croatia
,
June 21–24
, IEEE, pp.
1
10
.
19.
Beacom
,
M.
,
2021
, “
Synthesis and Control of a 3 Degrees of Freedom Inherently Dynamically Balanced Manipulator for an Unmanned Aerial Vehicle
,” Master thesis, Delft University of Technology, Delft, The Netherlands.
20.
Van der Wijk
,
V.
,
2014
,
“Methodology for Analysis and Synthesis of Inherently Force and Moment-Balanced Mechanisms,” Ph.D. thesis, University of Twente, Enschede, Netherlands
.
21.
Jimenez-Cano
,
A. E.
,
Martin
,
J.
,
Heredia
,
G.
,
Ollero
,
A.
, and
Cano
,
R.
,
2013
, “
Control of an Aerial Robot With Multi-Link Arm for Assembly Tasks
,”
2013 IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
, IEEE, pp.
4916
4921
.
22.
Yu
,
F.
,
Zhu
,
Q.
, and
Chen
,
Y.
,
2023
, “
Adaptive Fractional-Order Fast-Terminal-Type Sliding Mode Control for Underwater Vehicle-Manipulator Systems
,”
ASME J. Mech. Rob.
,
15
(
6
), p.
064501
.
23.
Zhang
,
G.
,
He
,
Y.
,
Gu
,
F.
,
Han
,
J.
, and
Liu
,
G.
,
2016
, “
Varying Inertial Parameters Model Based Robust Control for an Aerial Manipulator
,”
2016 IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Qingdao, China
,
Dec. 3–7
, IEEE, pp.
696
701
.
24.
Wu
,
Z.
,
Cheng
,
S.
,
Zhao
,
P.
,
Gahlawat
,
A.
,
Ackerman
,
K. A.
,
Lakshmanan
,
A.
,
Yang
,
C.
,
Yu
,
J.
, and
Hovakimyan
,
N.
,
2023
, “
L1 quad: L1 Adaptive Augmentation of Geometric Control for Agile Quadrotors With Performance Guarantees
,” arXiv preprint arXiv:2302.07208. https://arxiv.org/abs/2302.07208
25.
Pravitra
,
J.
,
Ackerman
,
K. A.
,
Cao
,
C.
,
Hovakimyan
,
N.
, and
Theodorou
,
E. A.
,
2020
, “
L1-Adaptive MPPI Architecture for Robust and Agile Control of Multirotors
,”
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Las Vegas, NV
,
Oct. 24, 2020–Jan. 24, 2021
, IEEE, pp.
7661
7666
.
26.
Wu
,
Z.
,
Cheng
,
S.
,
Ackerman
,
K. A.
,
Gahlawat
,
A.
,
Lakshmanan
,
A.
,
Zhao
,
P.
, and
Hovakimyan
,
N.
,
2022
, “
L1 Adaptive Augmentation for Geometric Tracking Control of Quadrotors
,”
2022 International Conference on Robotics and Automation (ICRA)
,
Philadelphia, PA
,
May 23–27
, IEEE, pp.
1329
1336
.
27.
Chen
,
W.-H.
,
Yang
,
J.
,
Guo
,
L.
, and
Li
,
S.
,
2015
, “
Disturbance-Observer-Based Control and Related Methods—An Overview
,”
IEEE. Trans. Ind. Electron.
,
63
(
2
), pp.
1083
1095
.
28.
Jiao
,
R.
,
Chou
,
W.
, and
Rong
,
Y.
,
2020
, “
Disturbance Observer-Based Backstepping Control for Quadrotor UAV Manipulator Attitude System
,”
2020 Chinese Automation Congress (CAC)
,
Shanghai, China
,
Nov. 6–8
, IEEE, pp.
2523
2526
.
29.
Sebastian
,
B.
, and
Ben-Tzvi
,
P.
,
2019
, “
Active Disturbance Rejection Control for Handling Slip in Tracked Vehicle Locomotion
,”
ASME J. Mech. Rob.
,
11
(
2
), p.
021003
.
30.
Zheng
,
Q.
,
Gaol
,
L. Q.
, and
Gao
,
Z.
,
2007
, “
On Stability Analysis of Active Disturbance Rejection Control for Nonlinear Time-varying Plants With Unknown Dynamics
,”
2007 46th IEEE Conference on Decision and Control
,
New Orleans, LA
,
Dec. 12–14
, IEEE, pp.
3501
3506
.
31.
Aydemir
,
M.
, and
Arıkan
,
K. B.
,
2020
, “
Evaluation of the Disturbance Rejection Performance of an Aerial Manipulator
,”
J. Intell. Robot. Syst.
,
97
(
3–4
), pp.
451
469
.
32.
Guo
,
B.-Z.
, and
Zhao
,
Z.-L.
,
2016
,
Active Disturbance Rejection Control for Nonlinear Systems: An Introduction
,
John Wiley & Sons
,
Newark, NJ
.
33.
Pu
,
Z.
,
Yuan
,
R.
,
Yi
,
J.
, and
Tan
,
X.
,
2015
, “
A Class of Adaptive Extended State Observers for Nonlinear Disturbed Systems
,”
IEEE. Trans. Ind. Electron.
,
62
(
9
), pp.
5858
5869
.
34.
Piovesan
,
D.
,
Kolesnikov
,
M.
,
Lynch
,
K.
, and
Mussa-Ivaldi
,
F. A.
,
2019
, “
The Concurrent Control of Motion and Contact Force in the Presence of Predictable Disturbances
,”
ASME J. Mech. Rob.
,
11
(
6
), p.
060903
.
35.
Garofano-Soldado
,
A.
,
Heredia
,
G.
, and
Ollero
,
A.
,
2021
, “
Aerodynamic Interference in Confined Environments With Tilted Propellers: Wall Effect and Corner Effect
,”
2021 Aerial Robotic Systems Physically Interacting With the Environment (AIRPHARO)
,
Biograd na Moru, Croatia
,
Oct. 4–5
, IEEE, pp.
1
8
.
36.
Rong
,
Y.
,
Chou
,
W.
, and
Jiao
,
R.
,
2022
, “
Robust Fault-Tolerant Motion/Force Control of a Fully-Actuated Hexarotor Using Adaptive Sliding Mode Impedance Control
,”
J. Robust. Nonlinear. Control.
,
32
(
7
), pp.
4149
4172
.
37.
Qi
,
Y.
,
Zhu
,
Y.
,
Wang
,
J.
,
Shan
,
J.
, and
Liu
,
H. H.
,
2021
, “
Mude-Based Control of Quadrotor for Accurate Attitude Tracking
,”
Control. Eng. Pract.
,
108
, p.
104721
.
38.
Ryll
,
M.
,
Muscio
,
G.
,
Pierri
,
F.
,
Cataldi
,
E.
,
Antonelli
,
G.
,
Caccavale
,
F.
,
Bicego
,
D.
, and
Franchi
,
A.
,
2019
, “
6d Interaction Control With Aerial Robots: The Flying End-Effector Paradigm
,”
Int. J. Robot. Res.
,
38
(
9
), pp.
1045
1062
.
39.
Lee
,
J. Y.
,
Leang
,
K. K.
, and
Yim
,
W.
,
2018
, “
Design and Control of a Fully-Actuated Hexrotor for Aerial Manipulation Applications
,”
ASME J. Mech. Rob.
,
10
(
4
), p.
041007
.
40.
Zhang
,
G.
,
He
,
Y.
,
Dai
,
B.
,
Gu
,
F.
,
Han
,
J.
, and
Liu
,
G.
,
2019
, “
Robust Control of an Aerial Manipulator Based on a Variable Inertia Parameters Model
,”
IEEE. Trans. Ind. Electron.
,
67
(
11
), pp.
9515
9525
.
41.
Shao
,
X.
,
Wang
,
L.
,
Li
,
J.
, and
Liu
,
J.
,
2019
, “
High-Order ESO Based Output Feedback Dynamic Surface Control for Quadrotors Under Position Constraints and Uncertainties
,”
Aerosp. Sci. Technol.
,
89
, pp.
288
298
.
42.
Dong
,
Z.
,
Li
,
B.
,
Li
,
J.
,
Huang
,
X.
, and
Zhang
,
Z.
,
2022
, “
Online Reliability Assessment of Energy Systems Based on a High-Order Extended-State-Observer With Application to Nuclear Reactors
,”
Renewable. Sustainable. Energy. Rev.
,
158
, p.
112159
.
43.
Hassan
,
K. K.
,
2002
, “
Nonlinear Systems
,”
Department of Electrical and Computer Engineering, Michigan State University
,
MI
.
44.
Ahrens
,
J. H.
, and
Khalil
,
H. K.
,
2009
, “
High-Gain Observers in the Presence of Measurement Noise: A Switched-Gain Approach
,”
Automatica
,
45
(
4
), pp.
936
943
.
45.
Liberzon
,
D.
,
2003
,
Switching in Systems and Control
, Vol.
190
,
Birkhauser
,
Boston, MA
.
46.
Song
,
P.
,
Yu
,
Y.
, and
Zhang
,
X.
,
2019
, “
A Tutorial Survey and Comparison of Impedance Control on Robotic Manipulation
,”
Robotica
,
37
(
5
), pp.
801
836
.
47.
Siciliano
,
B.
,
Lorenzo Sciavicco
,
L. V.
, and
Oriolo
,
G.
,
2010
,
Robotics: Modelling, Planning and Control
,
Springer Science & Business Media
,
London
.
You do not currently have access to this content.