Abstract

Compliant mechanisms, which can be integrally machined and without assembly, are well suited as joints for continuum robots (CRs), but how to incorporate the advantages of the compliant mechanism into the arm design is a key issue in this work. In this paper, a novel type of flexible spherical-hinged (FSH) joint composed of tetrahedron elements with a fixed virtual remote center of motion (RCM) at the bottom is proposed, and then extended to the CR and end-effector. In the arm design, the error compensation principle is used to offset the parasitic motion of the CR under external load (pressure and torque) and improve the bending and torsional isotropy of the arm through different series combinations, and then the stiffness model of the FSH joint and the statics model of the CR are developed using the 3D chain pseudo-rigid body model (3D-CPRBM) and tested. The results show that the 3D-CPRBM can effectively predict the deformation of the FSH joint and the CR. Moreover, the maximum standard deviation of the bending angle of the FSH joint in each direction is only 0.26 deg, the repeatable positioning accuracy of the CR can reach 0.5 deg, and the end-effector has good gripping ability and self-adaptive capability.

References

1.
Angrisani
,
L.
,
Grazioso
,
S.
,
Gironimo
,
G. D.
,
Panariello
,
D.
, and
Tedesco
,
A.
,
2019
, “
On the Use of Soft Continuum Robots for Remote Measurement Tasks in Constrained Environments: A Brief Overview of Applications
,”
Proceedings of 2019 IEEE International Symposium on Measurements & Networking (M&N)
,
Catania, Italy
,
July 8–10
, pp.
1
5
.
2.
Axinte
,
D.
,
Dong
,
X.
,
Palmer
,
D.
,
Rushworth
,
A.
,
Guzman
,
S. C.
,
Olarra
,
A.
,
Arizaga
,
I.
, et al
,
2018
, “
Mirror-Miniaturized Robotic Systems for Holistic In-Situ Repair and Maintenance Works in Restrained and Hazardous Environments
,”
IEEE/ASME Trans. Mechatron.
,
23
(
2
), pp.
978
981
.
3.
Omisore
,
O. M.
,
Han
,
S. P.
,
Xiong
,
J.
,
Li
,
H.
,
Li
,
Z.
, and
Wang
,
L.
,
2022
, “
A Review on Flexible Robotic Systems for Minimally Invasive Surgery
,”
IEEE Trans. Syst. Man Cybern. Syst.
,
52
(
1
), pp.
631
644
.
4.
Kim
,
Y.
,
Parada
,
G. A.
,
Liu
,
S.
, and
Zhao
,
X.
,
2019
, “
Ferromagnetic Soft Continuum Robots
,”
Sci. Rob.
,
4
(
33
), pp.
1
15
.
5.
Qi
,
F.
,
Chen
,
B.
,
Gao
,
S.
, and
She
,
S.
,
2021
, “
Dynamic Model and Control for a Cable-Driven Continuum Manipulator Used for Minimally Invasive Surgery
,”
Int. J. Med. Rob. Comput. Assist. Surg.
,
17
(
3
), pp.
1
15
.
6.
Liu
,
Y.
,
Yan
,
Q.
,
Zhang
,
Q.
,
Guo
,
W.
,
Odbal, Wu
,
B.
, and
Wang
,
Z.
,
2016
, “
Control System Design and Implementation of Flexible Multi-Joint Snake-Like Robot for Inspecting Vessel
,”
Proceedings of 14th International Conference on Intelligent Autonomous Systems (IAS)
,
Shanghai Jiao Tong University, Shanghai, China
,
July 3–7
, pp.
1037
1047
.
7.
Buckingham
,
R.
, and
Graham
,
A.
,
2012
, “
Nuclear Snake-Arm Robots
,”
Ind. Rob. Int. J.
,
39
(
1
), pp.
6
11
.
8.
Nahar
,
D.
,
Yanik
,
P. M.
, and
Walker
,
I. D.
,
2017
, “
Robot Tendrils: Long, Thin Continuum Robots for Inspection in Space Operations
,”
Proceedings of IEEE Aerospace Conference
,
Big Sky, MT
,
Mar. 4–11
, IEEE, New York.
9.
Liljeback
,
P.
, and
Mills
,
R.
,
2017
, “
Eelume: A Flexible and Subsea Resident IMR Vehicle
,”
Proceedings of Oceans Aberdeen Conference
,
Aberdeen, UK
,
June 19–22
, IEEE, New York.
10.
Wang
,
M.
,
Dong
,
X.
,
Ba
,
W.
,
Mohammad
,
A.
,
Axinte
,
D.
, and
Norton
,
A.
,
2021
, “
Design, Modelling and Validation of a Novel Extra Slender Continuum Robot for In-Situ Inspection and Repair in Aeroengine
,”
Rob. Comput. Integr. Manuf.
,
67
, p.
102054
.
11.
Palmer
,
D.
, and
Axinte
,
D.
,
2019
, “
Active Uncoiling and Feeding of a Continuum Arm Robot
,”
Rob. Comput. Integr. Manuf.
,
56
, pp.
107
116
.
12.
Alatorre
,
D.
,
Nasser
,
B.
,
Rabani
,
A.
,
Nagy-Sochacki
,
A.
,
Dong
,
X.
,
Axinte
,
D.
, and
Kell
,
J.
,
2019
, “
Teleoperated, In Situ Repair of an Aeroengine: Overcoming the Internet Latency Hurdle
,”
IEEE Robot. Autom. Mag.
,
26
(
1
), pp.
10
20
.
13.
Qin
,
G.
,
Cheng
,
Y.
,
Pan
,
H.
,
Zhao
,
W.
,
Shi
,
S.
,
Ji
,
A.
, and
Wu
,
H.
,
2022
, “
Systematic Design of Snake Arm Maintainer in Nuclear Industry
,”
Fusion Eng. Des.
,
176
, p.
113049
.
14.
Li
,
G.
,
Yu
,
J.
,
Dong
,
D.
,
Pan
,
J.
,
Wu
,
H.
,
Cao
,
S.
,
Pei
,
X.
,
Huang
,
X.
, and
Yi
,
J.
,
2022
, “
Systematic Design of a 3-DOF Dual-Segment Continuum Robot for In Situ Maintenance in Nuclear Power Plants
,”
Machines
,
10
(
7
), p.
596
.
15.
Buckingham
,
R.
,
Chitrakaran
,
V.
,
Conkie
,
R.
,
Ferguson
,
G.
,
Graham
,
A.
,
Lazell
,
A.
,
Lichon
,
M.
,
Parry
,
N.
,
Pollard
,
F.
, and
Kayani
,
A.
,
2008
, “
Snake-Arm Robots: A New Approach to Aircraft Assembly
,”
SAE Technical Paper 2007-01-3870.
16.
Zhang
,
X.
,
Xian
,
Y.
,
Cui
,
Z.
,
Chiu
,
P. W. Y.
, and
Li
,
Z.
,
2022
, “
Design and Modeling of a Novel DNA-Inspired Helix-Based Continuum Mechanism (DHCM)
,”
Mech. Mach. Theory
,
171
, p.
104702
.
17.
Yang
,
C.
,
Geng
,
S.
,
Walker
,
I.
,
Branson
,
D. T.
,
Liu
,
J.
,
Dai
,
J. S.
, and
Kang
,
R.
,
2020
, “
Geometric Constraint-Based Modeling and Analysis of a Novel Continuum Robot With Shape Memory Alloy Initiated Variable Stiffness
,”
Int. J. Rob. Res.
,
39
(
14
), pp.
1620
1634
.
18.
Girerd
,
C.
, and
Morimoto
,
T. K.
,
2021
, “
Design and Control of a Hand-Held Concentric Tube Robot for Minimally Invasive Surgery
,”
IEEE Trans. Rob.
,
37
(
4
), pp.
1022
1038
.
19.
Oliver-Butler
,
K.
,
Childs
,
J. A.
,
Daniel
,
A.
, and
Rucker
,
D. C.
,
2022
, “
Concentric Push-Pull Robots: Planar Modeling and Design
,”
IEEE Trans. Rob.
,
38
(
2
), pp.
1186
1200
.
20.
Thomas
,
T. L.
,
Kalpathy Venkiteswaran
,
V.
,
Ananthasuresh
,
G. K.
, and
Misra
,
S.
,
2021
, “
Surgical Applications of Compliant Mechanisms: A Review
,”
ASME J. Mech. Rob.
,
13
(
2
), p.
020801
.
21.
You
,
J. M.
,
Kim
,
H.
,
Kim
,
J.
, and
Kwon
,
D.-S.
,
2021
, “
Design and Analysis of High-Stiffness Hyperredundant Manipulator With Sigma-Shaped Wire Path and Rolling Joints
,”
IEEE Rob. Autom. Lett.
,
6
(
4
), pp.
7357
7364
.
22.
Boisclair
,
J.-M.
,
Laliberte
,
T.
, and
Gosselin
,
C.
,
2021
, “
On the Optimal Design of Underactuated Fingers Using Rolling Contact Joints
,”
IEEE Rob. Autom. Lett.
,
6
(
3
), pp.
4656
4663
.
23.
Li
,
S.
,
Vogt
,
D. M.
,
Rus
,
D.
, and
Wood
,
R. J.
,
2017
, “
Fluid-Driven Origami-Inspired Artificial Muscles
,”
Proc. Natl. Acad. Sci. U. S. A.
,
114
(
50
), pp.
13132
13137
.
24.
Chitalia
,
Y.
,
Jeong
,
S.
,
Yamamoto
,
K. K.
,
Chern
,
J. J.
, and
Desai
,
J. P.
,
2021
, “
Modeling and Control of a 2-DOF Meso-Scale Continuum Robotic Tool for Pediatric Neurosurgery
,”
IEEE Trans. Rob.
,
37
(
2
), pp.
520
531
.
25.
Kato
,
T.
,
Okumura
,
I.
,
Song
,
S. E.
,
Golby
,
A. J.
, and
Hata
,
N.
,
2015
, “
Tendon-Driven Continuum Robot for Endoscopic Surgery: Preclinical Development and Validation of a Tension Propagation Model
,”
IEEE ASME Trans. Mechatron.
,
20
(
5
), pp.
2252
2263
.
26.
Gao
,
A.
,
Carey
,
J. P.
,
Murphy
,
R. J.
,
Iordachita
,
I.
,
Taylor
,
R. H.
, and
Armand
,
M.
,
2016
, “
Progress Toward Robotic Surgery of the Lateral Skull Base: Integration of a Dexterous Continuum Manipulator and Flexible Ring Curette
,”
Proceedings of IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
,
May 16–21
, pp.
4429
4435
.
27.
Eastwood
,
K. W.
,
Francis
,
P.
,
Azimian
,
H.
,
Swarup
,
A.
,
Looi
,
T.
,
Drake
,
J. M.
, and
Naguib
,
H. E.
,
2018
, “
Design of a Contact-Aided Compliant Notched-Tube Joint for Surgical Manipulation in Confined Workspaces
,”
ASME J. Mech. Rob.
,
10
(
1
), p.
051001
.
28.
Park
,
S.
,
Kim
,
J.
,
Kim
,
C.
,
Cho
,
K. J.
, and
Noh
,
G.
,
2022
, “
Design Optimization of Asymmetric Patterns for Variable Stiffness of Continuum Tubular Robots
,”
IEEE Trans. Ind. Electron.
,
69
(
8
), pp.
8190
8200
.
29.
Morimoto
,
T. K.
, and
Okamura
,
A. M.
,
2016
, “
Design of 3-D Printed Concentric Tube Robots
,”
IEEE Trans. Rob.
,
32
(
6
), pp.
1419
1430
.
30.
Ding
,
B.
,
Li
,
X.
, and
Li
,
Y.
,
2021
, “
FEA-Based Optimization and Experimental Verification of a Typical Flexure-Based Constant Force Module
,”
Sens. Actuat. A
,
332
, p.
113083
.
31.
Bai
,
R.
, and
Chen
,
G.
,
2021
, “
Modeling Large Spatial Deflections of Slender Beams of Rectangular Cross Sections in Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
011021
.
32.
Li
,
G.
,
Yu
,
J.
,
Tang
,
Y.
,
Pan
,
J.
,
Cao
,
S.
, and
Pei
,
X.
,
2023
, “
Design and Modeling of Continuum Robot Based on Virtual-Center of Motion Mechanism
,”
Front. Mech. Eng.
,
18
(
2
), pp.
1
17
.
33.
Rommers
,
J.
,
van der Wijk
,
V.
, and
Herder
,
J. L.
,
2021
, “
A New Type of Spherical Flexure Joint Based on Tetrahedron Elements
,”
Precis. Eng.
,
71
, pp.
130
140
.
34.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
Synthesis of Multi-Degree of Freedom, Parallel Flexure System Concepts Via Freedom and Constraint Topology (FACT)—Part I: Principles
,”
Precis. Eng.
,
34
(
2
), pp.
259
270
.
35.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
Synthesis of Multi-Degree of Freedom, Parallel Flexure System Concepts Via Freedom and Constraint Topology (FACT). Part II: Practice
,”
Precis. Eng.
,
34
(
2
), pp.
271
278
.
36.
Yu
,
J.
,
Pei
,
X.
, and
Zong
,
G.
,
2014
,
Graphical Approach to Creative Design of Mechanical Devices
,
China Science Publishing & Media Ltd.
,
Beijing, China
.
37.
Wu
,
S.
,
Ze
,
Q.
,
Dai
,
J.
,
Udipi
,
N.
,
Paulino
,
G. H.
, and
Zhao
,
R.
,
2021
, “
Stretchable Origami Robotic Arm With Omnidirectional Bending and Twisting
,”
Proc. Natl. Acad. Sci. U. S. A.
,
118
(
36
), pp.
1
9
.
38.
Lee
,
K.
,
Wang
,
Y.
, and
Zheng
,
C.
,
2020
, “
Twister Hand: Underactuated Robotic Gripper Inspired by Origami Twisted Tower
,”
IEEE Trans. Rob.
,
36
(
2
), pp.
488
500
.
You do not currently have access to this content.