Abstract

Pipeline inspection in unknown environments is challenging for robots, and various in-pipe crawling robots have been developed in recent years to perform pipeline inspection. Most of these robots comprise multiple parts and require multiple actuators to realize the pipeline locomotion, resulting in complicated system composition and large energy consumption. In this paper, inspired by the crawling principles of earthworm locomotion, we propose a single-actuated camshaft robot that can realize multiple sequential motions for pipeline crawling. The proposed single-actuated camshaft robot contains one actuator and three parts: head anchoring, body elongation, and rear anchoring part. The multiple sequential motions of these three parts are realized based on the cam mechanisms. Umbrella-shaped elastic rubbers are circumferentially around the head and rear anchoring parts. Each part contains a cam bracket. The camshaft’s rotatory motion pushes the cam brackets to generate the axial translational motion, resulting in the umbrella-shaped elastic rubbers being expanded or contracted. The proposed camshaft robot’s expansion and contraction motion are sequentially realized by the phase deviation of the camshafts. First, the structures of the proposed robot are designed. Then, the cam curves are modeled, the expansion/contraction ratio of the rear/head anchoring part is calculated, the phase deviation of the camshafts is determined, and multiple sequential motions of the proposed robot are simulated. Finally, we fabricate the proposed camshaft robot and carry out crawling experiments in pipelines with different shapes and diameters.

References

1.
Ayadi
,
A.
,
Ghorbel
,
O.
,
BenSalah
,
M. S.
, and
Abid
,
M.
,
2022
, “
A Framework of Monitoring Water Pipeline Techniques Based on Sensors Technologies
,”
J. King Saud Univ.—Comput. Inf. Sci.
,
34
(
2
), pp.
47
57
.
2.
Ho
,
M.
,
El-Borgi
,
S.
,
Patil
,
D.
, and
Song
,
G.
,
2020
, “
Inspection and Monitoring Systems Subsea Pipelines: A Review Paper
,”
Struct. Health Monit.
,
19
(
2
), pp.
606
645
.
3.
Chen
,
C.
,
Li
,
C.
,
Reniers
,
G.
, and
Yang
,
F.
,
2021
, “
Safety and Security of Oil and Gas Pipeline Transportation: A Systematic Analysis of Research Trends and Future Needs Using WoS
,”
J. Clean Prod.
,
279
, p.
123583
.
4.
González-Arévalo
,
N. E.
,
Velázquez
,
J. C.
,
Díaz-Cruz
,
M.
,
Cervantes-Tobón
,
A.
,
Terán
,
G.
,
Hernández-Sanchez
,
E.
, and
Capula-Colindres
,
S.
,
2021
, “
Influence of Aging Steel on Pipeline Burst Pressure Prediction and Its Impact on Failure Probability Estimation
,”
Eng. Fail. Anal.
,
120
, p.
104950
.
5.
Laleh
,
M.
,
Xu
,
Y.
, and
Tan
,
M. Y. J.
,
2023
, “
A Three-Dimensional Electrode Array Probe Designed for Visualising Complex and Dynamically Changing Internal Pipeline Corrosion
,”
Corros. Sci.
,
211
, p.
110924
.
6.
Xia
,
Z.
,
Huang
,
Y.
,
Zhong
,
J.
, and
Guan
,
K.
,
2023
, “
Cracking Failure Analysis on a High-Frequency Electric Resistance Welding Pipe in Buried Fire Water Pipeline
,”
Eng. Fail. Anal.
,
146
, p.
107072
.
7.
Hadi
,
A.
,
Hassani
,
A.
,
Alipour
,
K.
,
Askari Moghadam
,
R.
, and
Pourakbarian Niaz
,
P.
,
2020
, “
Developing an Adaptable Pipe Inspection Robot Using Shape Memory Alloy Actuators
,”
J. Intell. Mater. Syst. Struct.
,
31
(
4
), pp.
632
647
.
8.
Kakogawa
,
A.
,
Nishimura
,
T.
, and
Ma
,
S.
,
2016
, “
Designing Arm Length of a Screw Drive In-Pipe Robot for Climbing Vertically Positioned Bent Pipes
,”
Robotica
,
34
(
2
), pp.
306
327
.
9.
Zhang
,
Y.
,
Xu
,
J.
, and
Wang
,
W.
,
2018
, “
Kinematics and Force Analysis of Flexible Screw Mechanism for a Worm Robot
,”
ASME J. Mech. Rob.
,
10
(
6
), p.
061005
.
10.
Li
,
T.
,
Ma
,
S.
,
Li
,
B.
,
Wang
,
M.
,
Li
,
Z.
, and
Wang
,
Y.
,
2017
, “
Development of an In-Pipe Robot With Differential Screw Angles for Curved Pipes and Vertical Straight Pipes
,”
ASME J. Mech. Rob.
,
9
(
5
), p.
051014
.
11.
Savin
,
S.
,
2018
, “
RRT-Based Motion Planning for In-Pipe Walking Robots
,”
2018 Dynamics of Systems, Mechanisms and Machines (Dynamics)
,
Omsk, Russia
,
Nov. 13–15
, pp.
1
6
.
12.
Zhang
,
Y.
, and
Yan
,
G.
,
2007
, “
In-Pipe Inspection Robot With Active Pipe-Diameter Adaptability and Automatic Tractive Force Adjusting
,”
Mech. Mach. Theory
,
42
(
12
), pp.
1618
1631
.
13.
Steffan
,
E.
,
Pal
,
S.
, and
Das
,
T.
,
2020
, “
Bio-Inspired Locomotion of Circular Robots With Diametrically Translating Legs
,”
ASME J. Mech. Rob.
,
12
(
1
), p.
011005
.
14.
Nakagawa
,
K.
,
Dohta
,
S.
,
Akagi
,
T.
, and
Kobayashi
,
W.
,
2017
, “
Improvement of Pipe Holding Mechanism for Pipe Inspection Robot Using Flexible Pneumatic Cylinder
,”
2017 International Conference on Robotics and Automation Sciences (ICRAS)
,
IEEE, Hong Kong, China
,
Aug. 26–29
, pp.
6
10
.
15.
Yamamoto
,
T.
, and
Kamimura
,
A.
,
2023
, “
Design and Characterization of a Hollow and Duplex-Chambered Propulsion Module for Narrow Pipe Inspection
,”
ASME J. Mech. Rob.
,
15
(
2
), p.
021010
.
16.
Luo
,
Y.
,
Zhao
,
N.
,
Shen
,
Y.
, and
Li
,
P.
,
2023
, “
A Rigid Morphing Mechanism Enabled Earthworm-Like Crawling Robot
,”
ASME J. Mech. Rob.
,
15
(
1
), p.
011008
.
17.
Wahed
,
M. A. A.
, and
Arshad
,
M. R.
,
2017
, “
Wall-Press Type Pipe Inspection Robot
,”
2017 IEEE 2nd International Conference on Automatic Control and Intelligent Systems (I2CACIS)
,
IEEE, Kota Kinabalu, Malaysia
,
Oct. 21
, pp.
185
190
.
18.
Mishra
,
D.
,
Agrawal
,
K. K.
,
Abbas
,
A.
,
Srivastava
,
R.
, and
Yadav
,
R. S.
,
2019
, “
PIG [Pipe Inspection Gauge]: An Artificial Dustman for Cross Country Pipelines
,”
Proc. Comput. Sci.
,
152
, pp.
333
340
.
19.
Guan
,
L.
,
Gao
,
Y.
,
Liu
,
H.
,
An
,
W.
, and
Noureldin
,
A.
,
2019
, “
A Review on Small-Diameter Pipeline Inspection Gauge Localization Techniques: Problems, Methods and Challenges
,”
2019 International Conference on Communications, Signal Processing, and Their Applications (ICCSPA)
,
Sharjah, United Arab Emirates
,
Mar. 19–21
, pp.
1
6
.
20.
Tang
,
C.
,
Du
,
B.
,
Jiang
,
S.
,
Shao
,
Q.
,
Dong
,
X.
,
Liu
,
X.-J.
, and
Zhao
,
H.
,
2022
, “
A Pipeline Inspection Robot for Navigating Tubular Environments in the Sub-Centimeter Scale
,”
Sci. Rob.
,
7
(
66
), p.
eabm8597
.
21.
Kwon
,
Y.-S.
,
Lee
,
B.
,
Whang
,
I.-C.
,
Kim
,
W.
, and
Yi
,
B.-J.
,
2011
, “
A Flat Pipeline Inspection Robot With Two Wheel Chains
,”
2011 IEEE International Conference on Robotics and Automation
,
Shanghai, China
,
May 9–13
, pp.
5141
5146
.
22.
Gargade
,
A.
, and
Ohol
,
S.
,
2021
, “
Design and Development of In-Pipe Inspection Robot for Various Pipe Sizes
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
1012
(
1
), p.
012001
.
23.
Li
,
H.
,
Li
,
R.
,
Zhang
,
J.
, and
Zhang
,
P.
,
2020
, “
Development of a Pipeline Inspection Robot for the Standard Oil Pipeline of China National Petroleum Corporation
,”
Appl. Sci.
,
10
(
8
), p.
2853
.
24.
Verma
,
A.
,
Kaiwart
,
A.
,
Dubey
,
N. D.
,
Naseer
,
F.
, and
Pradhan
,
S.
,
2022
, “
A Review on Various Types of In-Pipe Inspection Robot
,”
Mater. Today: Proc.
,
50
, pp.
1425
1434
.
25.
Nishimura
,
T.
,
Kakogawa
,
A.
, and
Ma
,
S.
,
2012
, “
Pathway Selection Mechanism of a Screw Drive In-Pipe Robot in T-Branches
,”
2012 IEEE International Conference on Automation Science and Engineering (CASE)
,
Seoul, South Korea
,
Aug. 20–24
, pp.
612
617
.
26.
Li
,
P.
,
Tang
,
M.
,
Lyu
,
C.
,
Fang
,
M.
,
Duan
,
X.
, and
Liu
,
Y.
,
2018
, “
Design and Analysis of a Novel Active Screw-Drive Pipe Robot
,”
Adv. Mech. Eng.
,
10
(
10
), p.
168781401880138
.
27.
Chablat
,
D.
,
Venkateswaran
,
S.
, and
Boyer
,
F.
,
2018
, “
Mechanical Design Optimization of a Piping Inspection Robot
,”
Proc. CIRP
,
70
, pp.
307
312
.
28.
Ji
,
X.
,
Liu
,
X.
,
Cacucciolo
,
V.
,
Imboden
,
M.
,
Civet
,
Y.
,
El Haitami
,
A.
,
Cantin
,
S.
,
Perriard
,
Y.
, and
Shea
,
H.
,
2019
, “
An Autonomous Untethered Fast Soft Robotic Insect Driven by Low-Voltage Dielectric Elastomer Actuators
,”
Sci. Rob.
,
4
(
37
), p.
eaaz6451
.
29.
Tang
,
C.
,
Ma
,
W.
,
Li
,
B.
,
Jin
,
M.
, and
Chen
,
H.
,
2020
, “
Cephalopod-Inspired Swimming Robot Using Dielectric Elastomer Synthetic Jet Actuator
,”
Adv. Eng. Mater.
,
22
(
4
), p.
1901130
.
30.
Chen
,
B.
,
Wang
,
N.
,
Wang
,
R.
,
Zhu
,
B.
,
Zhang
,
X.
,
Sun
,
W.
, and
Chen
,
W.
,
2023
, “
Automatic Design of Dielectric Elastomer-Based Crawling Robots Using Shape and Topology Optimization
,”
ASME J. Mech. Rob.
,
15
(
2
), p.
021006
.
31.
Zhao
,
H.
,
O’Brien
,
K.
,
Li
,
S.
, and
Shepherd
,
R. F.
,
2016
, “
Optoelectronically Innervated Soft Prosthetic Hand Via Stretchable Optical Waveguides
,”
Sci. Rob.
,
1
(
1
), p.
eaai7529
.
32.
Wang
,
N.
,
Chen
,
B.
,
Ge
,
X.
,
Zhang
,
X.
, and
Chen
,
W.
,
2021
, “
Design, Kinematics, and Application of Axially and Radially Expandable Modular Soft Pneumatic Actuators
,”
ASME J. Mech. Rob.
,
13
(
2
), p.
021019
.
33.
Yuk
,
H.
,
Lin
,
S.
,
Ma
,
C.
,
Takaffoli
,
M.
,
Fang
,
N. X.
, and
Zhao
,
X.
,
2017
, “
Hydraulic Hydrogel Actuators and Robots Optically and Sonically Camouflaged in Water
,”
Nat. Commun.
,
8
(
1
), p.
14230
.
34.
Lin
,
H.-T.
,
Leisk
,
G. G.
, and
Trimmer
,
B.
,
2011
, “
GoQBot: A Caterpillar-Inspired Soft-Bodied Rolling Robot
,”
Bioinsp. Biomim.
,
6
(
2
), p.
026007
.
35.
Wang
,
W.
,
Kim
,
N.-G.
,
Rodrigue
,
H.
, and
Ahn
,
S.-H.
,
2017
, “
Modular Assembly of Soft Deployable Structures and Robots
,”
Mater. Horiz.
,
4
(
3
), pp.
367
376
.
36.
Meng
,
L.
,
Kang
,
R.
,
Gan
,
D.
,
Chen
,
G.
,
Chen
,
L.
,
Branson
,
D. T.
, and
Dai
,
J. S.
,
2020
, “
A Mechanically Intelligent Crawling Robot Driven by Shape Memory Alloy and Compliant Bistable Mechanism
,”
ASME J. Mech. Rob.
,
12
(
6
), p.
061005
.
37.
Zhang
,
J.
,
Sheng
,
J.
,
O’Neill
,
C. T.
,
Walsh
,
C. J.
,
Wood
,
R. J.
,
Ryu
,
J.-H.
,
Desai
,
J. P.
, and
Yip
,
M. C.
,
2019
, “
Robotic Artificial Muscles: Current Progress and Future Perspectives
,”
IEEE Trans. Rob.
,
35
(
3
), pp.
761
781
.
38.
Lin
,
Y.
,
Xu
,
Y.-X.
, and
Juang
,
J.-Y.
,
2023
, “
Single-Actuator Soft Robot for In-Pipe Crawling
,”
Soft Rob.
,
10
(
1
), pp.
174
186
.
39.
Zhang
,
X.
,
Pan
,
T.
,
Heung
,
H. L.
,
Chiu
,
P. W. Y.
, and
Li
,
Z.
,
2018
, “
A Biomimetic Soft Robot for Inspecting Pipeline With Significant Diameter Variation
,”
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
IEEE, Madrid, Spain
,
Oct. 1–5
, pp.
7486
7491
.
40.
Kim
,
W.
,
Byun
,
J.
,
Kim
,
J.-K.
,
Choi
,
W.-Y.
,
Jakobsen
,
K.
,
Jakobsen
,
J.
,
Lee
,
D.-Y.
, and
Cho
,
K.-J.
,
2019
, “
Bioinspired Dual-Morphing Stretchable Origami
,”
Sci. Rob.
,
4
(
36
), p.
eaay3493
.
You do not currently have access to this content.