Abstract

Robots are playing an important role in precision manufacturing and automated inspection, which places higher demands on the positioning accuracy. The Delta robot is the most widely used parallel robot with high speed and small cumulative error. In this way, improving the positioning accuracy of the Delta robot can expand its application scenarios. According to the parameter mapping relationship, the position error can be divided into geometric error and non-geometric error. Considering the influence of the orientation errors on the actual position of the robot end, an error model to recognize the geometric error is established, and the parameter identification is performed based on an iterative approach. For the non-geometric error, the 3D annular sector grid division method and the interpolation rule are established based on the error similarity. And then, a new error compensation method for Delta robots is proposed by combining geometric error modeling with spatial interpolating. After compensation, the positioning accuracy of the Delta robot is improved significantly. The maximum absolute positioning error of the robot is reduced by 86.08% from 2.084 mm to 0.290 mm, the average absolute positioning error of the robot is reduced by 81.77% from 0.790 mm to 0.144 mm, and the error trend in the workspace is eliminated, so as to enable the expansion of Delta robot applications.

References

1.
Wang
,
J.
,
Tao
,
B.
,
Gong
,
Z.
,
Yu
,
S.
, and
Yin
,
Z.
,
2021
, “
A Mobile Robotic Measurement System for Large-Scale Complex Components Based On Optical Scanning and Visual Tracking
,”
Rob. Comput.-Integr. Manuf.
,
67
, p.
102010
.
2.
Chesser
,
P. C.
,
Wang
,
P. L.
,
Vaughan
,
J. E.
,
Lind
,
R. F.
, and
Post
,
B. K.
,
2022
, “
Kinematics of a Cable-Driven Robotic Platform for Large-Scale Additive Manufacturing
,”
ASME J. Mech. Rob.
,
14
(
2
), p.
021010
.
3.
Kelaiaia
,
R.
,
2017
, “
Improving the Pose Accuracy of the Delta Robot in Machining Operations
,”
Int. J. Adv. Manuf. Technol.
,
91
(
5–8
), pp.
2205
2215
.
4.
Ni
,
J.
,
Mei
,
J.
,
Ding
,
Y.
,
Yu
,
D.
,
Duan
,
Y.
, and
Le
,
Y.
,
2023
, “
A Trajectory Planning Approach for Delta Robots Considering Both Motion Smoothness and Dynamic Stress
,”
ASME J. Mech. Rob.
,
15
(
4
), p.
041012
.
5.
Bai
,
P.
,
Mei
,
J.
,
Huang
,
T.
, and
Chetwynd
,
D. G.
,
2016
, “
Kinematic Calibration of Delta Robot Using Distance Measurements
,”
Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci.
,
230
(
3
), pp.
414
424
.
6.
Nguyen
,
V. L.
,
Kuo
,
C.-H.
, and
Lin
,
P. T.
,
2022
, “
Compliance Error Compensation of a Robot End-Effector With Joint Stiffness Uncertainties for Milling: An Analytical Model
,”
Mech. Mach. Theory
,
170
, p.
104717
.
7.
Aliakbari
,
M.
, and
Mahboubkhah
,
M.
,
2020
, “
An Adaptive Computer-Aided Path Planning to Eliminate Errors of Contact Probes On Free-Form Surfaces Using a 4-Dof Parallel Robot Cmm and a Turn-Table
,”
Measurement
,
166
, p.
108216
.
8.
Denavit
,
J.
, and
Hartenberg
,
R. S.
,
1955
, “
A Kinematic Notation for Lower-Pair Mechanisms Based On Matrices
,”
ASME J. Appl. Mech.
,
22
(
2
), pp.
215
221
.
9.
Shim
,
S.
,
Lee
,
S.
,
Joo
,
S.
, and
Seo
,
J.
,
2022
, “
Denavit-Hartenberg Notation-Based Kinematic Constraint Equations for Forward Kinematics of the 3-6 Stewart Platform
,”
ASME J. Mech. Rob.
,
14
(
5
), p.
054505
.
10.
Ropponen
,
T.
, and
Arai
,
T.
,
1995
, “
Accuracy Analysis of a Modified Stewart Platform Manipulator
,”
Proceedings of the IEEE International Conference on Robotics & Automation
,
Nagoya, Aichi, Japan
,
May 21–27
, vol. 1, pp.
521
525
.
11.
Jin
,
Y.
, and
Ming Chen
,
I.
,
2006
, “
Effects of Constraint Errors On Parallel Manipulators With Decoupled Motion
,”
Mech. Mach. Theory
,
41
(
8
), pp.
912
928
.
12.
Shang
,
D.
,
Li
,
Y.
,
Liu
,
Y.
, and
Cui
,
S.
,
2019
, “
Research on the Motion Error Analysis and Compensation Strategy of the Delta Robot
,”
Mathematics
,
7
(
5
), p.
411
.
13.
Huang
,
C. H.
,
Xie
,
F. G.
,
Liu
,
X. J.
, and
Meng
,
Q. Z.
,
2022
, “
Measurement Configuration Optimization and Kinematic Calibration of a Parallel Robot
,”
ASME J. Mech. Rob.
,
14
(
3
), p.
031017
.
14.
Andrioaia
,
D.
,
Puiu
,
P. G.
, and
Ghenadi
,
A.
,
2015
, “
The Influence of the Errors Introduced by the Actuator on the Positioning Accuracy of the Robots With Parallel Delta 3 Dof
,”
Appl. Mech. Mater.
,
809–810
, pp.
1225
1230
.
15.
Simionescu
,
I.
,
Ciupitu
,
L.
, and
Ionita
,
L. C.
,
2015
, “
Static Balancing With Elastic Systems of Delta Parallel Robots
,”
Mech. Mach. Theory
,
87
, pp.
150
162
.
16.
Ghazi
,
M.
,
Nazir
,
Q.
,
Butt
,
S. U.
, and
Baqai
,
A. A.
,
2018
, “
Accuracy Analysis of 3-Rss Delta Parallel Manipulator
,”
Procedia Manuf.
,
17
, pp.
174
182
.
17.
Li
,
Y.
,
Shang
,
D.
,
Fan
,
X.
,
Liu
,
Y.
,
Xuping
,
Z.
, and
Zhang
,
X.
,
2019
, “
Motion Reliability Analysis of the Delta Parallel Robot Considering Mechanism Errors
,”
Math. Probl. Eng.
,
2019
, pp.
1
10
.
18.
Caro
,
S.
,
Wenger
,
P.
,
Bennis
,
F.
, and
Chablat
,
D.
,
2006
, “
Sensitivity Analysis of the Orthoglide: A Three-Dof Translational Parallel Kinematic Machine
,”
ASME J. Mech. Des.
,
128
(
2
), pp.
392
402
.
19.
Vischer
,
P.
, and
Clavel
,
R.
,
1998
, “
Kinematic Calibration of the Parallel Delta Robot
,”
Robotica
,
16
(
2
), pp.
207
218
.
20.
Shen
,
H.
,
Meng
,
Q.
,
Li
,
J.
,
Deng
,
J.
, and
Wu
,
G.
,
2021
, “
Kinematic Sensitivity, Parameter Identification and Calibration of a Non-Fully Symmetric Parallel Delta Robot
,”
Mech. Mach. Theory
,
161
, p.
104311
.
21.
Brahmia
,
A.
,
Kelaiaia
,
R.
,
Chemori
,
A.
, and
Company
,
O.
,
2022
, “
On Robust Mechanical Design of a PAR2 Delta-Like Parallel Kinematic Manipulator
,”
ASME J. Mech. Rob.
,
14
(
1
), p.
011001
.
22.
Wang
,
W.
,
Tian
,
W.
,
Liao
,
W.
,
Li
,
B.
, and
Hu
,
J.
,
2022
, “
Error Compensation of Industrial Robot Based on Deep Belief Network and Error Similarity
,”
Rob. Comput.-Integr. Manuf.
,
73
, p.
102220
.
23.
Bo
,
L. I.
,
Wei
,
T. I. A. N.
,
Chufan
,
Z. H. A. N. G.
,
Fangfang
,
H. U. A.
,
Guangyu
,
C. U. I.
, and
Yufei
,
L. I.
,
2022
, “
Positioning Error Compensation of an Industrial Robot Using Neural Networks and Experimental Study
,”
Chin. J. Aeronaut.
,
35
(
2
), pp.
346
360
.
24.
Olds
,
K. C.
,
2015
, “
Global Indices for Kinematic and Force Transmission Performance in Parallel Robots
,”
IEEE Trans. Rob.
,
31
(
2
), pp.
494
500
.
25.
Mehrafrooz
,
B.
,
Mohammadi
,
M.
, and
Masouleh
,
M. T.
,
2017
, “
Kinematic Sensitivity Evaluation of Revolute and Prismatic 3-Dof Delta Robots
,”
Proceedings of the 2017 5th RSI International Conference on Robotics and Mechatronics (ICRoM)
,
Tehran, Iran
,
Oct. 25–27
, pp.
225
231
.
26.
Zeng
,
Y.
,
Tian
,
W.
, and
Liao
,
W.
,
2016
, “
Positional Error Similarity Analysis for Error Compensation of Industrial Robots
,”
Rob. Comput.-Integr. Manuf.
,
42
, pp.
113
120
.
27.
Zeng
,
Y.
,
Tian
,
W.
,
Li
,
D.
,
He
,
X.
, and
Liao
,
W.
,
2017
, “
An Error-Similarity-Based Robot Positional Accuracy Improvement Method for a Robotic Drilling and Riveting System
,”
Int. J. Adv. Manuf. Technol.
,
88
(
9–12
), pp.
2745
2755
.
28.
Kersten
,
T. P.
, and
Lindstaedt
,
M.
,
2022
, “
Geometric Accuracy Investigations of Terrestrial Laser Scanner Systems in the Laboratory and in the Field
,”
Appl. Geomat.
,
14
(
2
), pp.
421
434
.
You do not currently have access to this content.