Abstract

This paper explores a class of extended double-centered linkages and presents two novel multi-bifurcated double-centered metamorphic and reconfigurable mechanisms. Higher order kinematic analyses and singular value decomposition are combined to demonstrate the characteristics of multi-furcation and to reveal motion branch transformation. These findings show that the presented double-centered linkages are able to evolve to distinct motion branches including two spherical 4R linkages, line-symmetric Bricard linkage or Bennett linkage. Furthermore, by exploring the local properties of singular configurations on geometric constraints and algebraic relationships, a systematic approach for the synthesis of the singular configurations can be designed to discover more novel multi-bifurcated metamorphic and reconfigurable mechanisms.

References

1.
Aimedee
,
F.
,
Gogu
,
G.
,
Dai
,
J. S.
,
Bouzgarrou
,
C.
, and
Bouton
,
N.
,
2016
, “
Systematization of Morphing in Reconfigurable Mechanisms
,”
Mech. Mach. Theory
,
96
, pp.
215
224
.
2.
Wohlhart
,
K.
,
1996
, “Kinematotropic Linkages,”
Recent Advances in Robot Kinematics
,
J.
Lenarčič
and
V.
Parenti-Castelli
, eds.,
Springer
,
New York
, pp.
359
368
.
3.
Dai
,
J. S.
, and
Jones
,
J. R.
,
1999
, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
375
382
.
4.
Dai
,
J. S.
, and
Jones
,
J. R.
,
2005
, “
Matrix Representation of Topological Changes in Metamorphic Mechanisms
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
837
840
.
5.
Yan
,
H. S.
, and
Liu
,
N. T.
,
2000
, “
Finite-State-Machine Representations for Mechanisms and Chains With Variable Topologies
,”
ASME Design Engineering Technical Conference
,
Baltimore, MD
,
Sept. 10–13
, pp.
10
13
.
6.
Yan
,
H. S.
, and
Liu
,
N. T.
,
2003
, “
Joint-Codes Representations for Mechanisms and Chains With Variable Topologies
,”
Trans. Can. Soc. Mech. Eng.
,
27
(
1–2
), pp.
131
143
.
7.
Tang
,
Z.
,
Qi
,
P.
, and
Dai
,
J. S.
,
2017
, “
Mechanism Design of a Biomimetic Quadruped Robot
,”
Ind. Rob.: Int. J.
,
44
(
4
), pp.
512
520
.
8.
Tang
,
Z.
,
Wang
,
K.
,
Spyrakos-Papastavridis
,
E.
, and
Dai
,
J. S.
,
2022
, “
Origaker: A Novel Multi-Mimicry Quadruped Robot Based on a Metamorphic Mechanism
,”
ASME J. Mech. Rob.
,
14
(
6
), p.
060907
.
9.
Jia
,
G.
,
Huang
,
H.
,
Li
,
B.
,
Wu
,
Y.
,
Cao
,
Q.
, and
Guo
,
H.
,
2018
, “
Synthesis of a Novel Type of Metamorphic Mechanism Module for Large Scale Deployable Grasping Manipulators
,”
Mech. Mach. Theory
,
128
, pp.
544
559
.
10.
Sun
,
H.
,
Sun
,
W.
,
Chen
,
B.
,
Hou
,
Y.
, and
Kong
,
J.
,
2022
, “
Design, Analysis, and Experiment of a Scissor-Shaped Deployable Metamorphic Hand
,”
ASME J. Mech. Rob.
,
14
(
6
), p.
060909
.
11.
Prabakaran
,
V.
,
Elara
,
M. R.
,
Pathmakumar
,
T.
, and
Nansai
,
S.
,
2018
, “
Floor Cleaning Robot With Reconfigurable Mechanism
,”
Automat. Construct.
,
91
, pp.
155
165
.
12.
Song
,
Z.
,
Luo
,
Z.
,
Wei
,
G.
, and
Shang
,
J.
,
2022
, “
A Portable Six-Wheeled Mobile Robot With Reconfigurable Body and Self-Adaptable Obstacle-Climbing Mechanisms
,”
ASME J. Mech. Rob.
,
14
(
5
), p.
051010
.
13.
Song
,
Z.
,
Luo
,
Z.
,
Wei
,
G.
, and
Shang
,
J.
,
2024
, “
Self-Adaptive Obstacle Crossing of an Antibot From Reconfiguration Control and Mechanical Adaptation
,”
ASME J. Mech. Rob.
,
16
(
2
), p.
021002
.
14.
Gan
,
D.
,
Dai
,
J. S.
, and
Liao
,
Q.
,
2009
, “
Mobility Change in Two Types of Metamorphic Parallel Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
4
), p.
041007
.
15.
Zhang
,
K.
,
Dai
,
J. S.
, and
Fang
,
Y.
,
2013
, “
Geometric Constraint and Mobility Variation of Two 3svpsv Metamorphic Parallel Mechanisms
,”
ASME J. Mech. Des.
,
135
(
1
), p.
011001
.
16.
Gan
,
D.
,
Dai
,
J. S.
,
Dias
,
J.
, and
Seneviratne
,
L.
,
2014
, “
Constraint-Plane-Based Synthesis and Topology Variation of a Class of Metamorphic Parallel Mechanisms
,”
J. Mech. Sci. Technol.
,
28
(
10
), pp.
4179
4191
.
17.
Zhang
,
K.
, and
Dai
,
J. S.
,
2014
, “
A Kirigami-Inspired 8r Linkage and Its Evolved Overconstrained 6r Linkages With the Rotational Symmetry of Order Two
,”
ASME J. Mech. Rob.
,
6
(
2
), p.
021007
.
18.
Ye
,
W.
,
Fang
,
Y.
,
Zhang
,
K.
, and
Guo
,
S.
,
2014
, “
A New Family of Reconfigurable Parallel Mechanisms With Diamond Kinematotropic Chain
,”
Mech. Mach. Theory
,
74
, pp.
1
9
.
19.
Song
,
C.
,
Chen
,
Y.
, and
Chen
,
I.-M.
,
2013
, “
A 6r Linkage Reconfigurable Between the Line-Symmetric Bricard Linkage and the Bennett Linkage
,”
Mech. Mach. Theory
,
70
, pp.
278
292
.
20.
Qin
,
Y.
,
Dai
,
J. S.
, and
Gogu
,
G.
,
2014
, “
Multi-Furcation in a Derivative Queer-Square Mechanism
,”
Mech. Mach. Theory
,
81
, pp.
36
53
.
21.
Lopez-Custodio
,
P. C.
, and
Dai
,
J. S.
,
2019
, “
Design of a Variable-Mobility Linkage Using the Bohemian Dome
,”
J. Mech. Des.
,
141
(
9
), p.
092303
.
22.
Zlatanov
,
D.
,
Bonev
,
I. A.
, and
Gosselin
,
C. M.
,
2002
, “Constraint Singularities as c-Space Singularities,”
Advances in Robot Kinematics
,
J.
Lenarčič
and
F.
Thomas
, eds.,
Springer
,
New York
, pp.
183
192
.
23.
Muller
,
A.
,
2016
, “
Local Kinematic Analysis of Closed-Loop Linkages Mobility, Singularities, and Shakiness
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041013
.
24.
Pellegrino
,
S.
,
1993
, “
Structural Computations With the Singular Value Decomposition of the Equilibrium Matrix
,”
Int. J. Solids Struct.
,
30
(
21
), pp.
3025
3035
.
25.
Kumar
,
P.
, and
Pellegrino
,
S.
,
2000
, “
Computation of Kinematic Paths and Bifurcation Points
,”
Int. J. Solids Struct.
,
37
(
46–47
), pp.
7003
7027
.
26.
Chen
,
Y.
, and
Chai
,
W. H.
,
2011
, “
Bifurcation of a Special Line and Plane Symmetric Bricard Linkage
,”
Mech. Mach. Theory
,
46
(
4
), pp.
515
533
.
27.
He
,
X.
,
Kong
,
X.
,
Chablat
,
D.
,
Caro
,
S.
, and
Hao
,
G.
,
2014
, “
Kinematic Analysis of a Single-Loop Reconfigurable 7r Mechanism With Multiple Operation Modes
,”
Robotica
,
32
(
7
), pp.
1171
1188
.
28.
Feng
,
H.
,
Chen
,
Y.
,
Dai
,
J. S.
, and
Gogu
,
G.
,
2017
, “
Kinematic Study of the General Plane-Symmetric Bricard Linkage and Its Bifurcation Variations
,”
Mech. Mach. Theory
,
116
, pp.
89
104
.
29.
Rico
,
J. M.
,
Gallardo
,
J.
, and
Duffy
,
J.
,
1999
, “
Screw Theory and Higher Order Kinematic Analysis of Open Serial and Closed Chains
,”
Mech. Mach. Theory
,
34
(
4
), pp.
559
586
.
30.
Muller
,
A.
,
2014
, “
Higher Derivatives of the Kinematic Mapping and Some Applications
,”
Mech. Mach. Theory
,
76
, pp.
70
85
.
31.
Lopez-Custodio
,
P. C.
,
Rico
,
J. M.
,
Cervantes-Sánchez
,
J. J.
,
Pérez-Soto
,
G. I.
, and
Díez-Martínez
,
C. R.
,
2017
, “
Verification of the Higher Order Kinematic Analyses Equations
,”
Eur. J. Mech. A/Solids
,
61
, pp.
198
215
.
32.
Lee
,
C. C.
, and
Yan
,
H. S.
,
1990
, “
Movable Spatial 6r Mechanisms With Three Adjacent Concurrent Axes
,”
Trans. Can. Soc. Mech. Eng.
,
14
(
3
), pp.
85
90
.
33.
Baker
,
J. E.
,
2002
, “
Displacement–Closure Equations of the Unspecialised Double-Hooke’s-Joint Linkage
,”
Mech. Mach. Theory
,
37
(
10
), pp.
1127
1144
.
34.
Yan
,
H. S.
,
1993
, “
Flowable Spatial 6r Mechanisms With Three Adjacent Parallel Axes
,”
ASME J. Mech. Des.
,
115
(
3
), p.
523
.
35.
Makhsudyan
,
N.
,
Djavakhyan
,
R.
, and
Arakelian
,
V.
,
2009
, “
Comparative Analysis and Synthesis of Six-Bar Mechanisms Formed by Two Serially Connected Spherical and Planar Four-bar Linkages
,”
Mech. Res. Commun.
,
36
(
2
), pp.
162
168
.
36.
Cui
,
L.
, and
Dai
,
J. S.
,
2011
, “
Axis Constraint Analysis and Its Resultant 6r Double-Centered Overconstrained Mechanisms
,”
ASME J. Mech. Rob.
,
3
(
3
), p.
031004
.
37.
Maaroof
,
O. W.
, and
Dede
,
M. I. C.
,
2014
, “
Kinematic Synthesis of Over-Constrained Double-Spherical Six-Bar Mechanism
,”
Mech. Mach. Theory
,
73
, pp.
154
168
.
38.
Baker
,
J. E.
,
2014
, “
A Variant Double-Spherical Linkage and Its Reciprocal Screw
,”
Mech. Mach. Theory
,
74
, pp.
31
41
.
39.
Zhang
,
K.
, and
Dai
,
J. S.
,
2016
, “
Reconfiguration of the Plane-Symmetric Double-Spherical 6r Linkage With Bifurcation and Trifurcation
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
230
(
3
), pp.
473
482
.
40.
Chen
,
Y.
,
You
,
Z.
, and
Tarnai
,
T.
,
2005
, “
Threefold-Symmetric Bricard Linkages for Deployable Structures
,”
Int. J. Solids Struct.
,
42
(
8
), pp.
2287
2301
.
41.
Racila
,
L.
, and
Dahan
,
M.
,
2010
, “
Spatial Properties of Wohlhart Symmetric Mechanism
,”
Meccanica
,
45
(
2
), pp.
153
165
.
42.
Bricard
,
R.
,
1897
, “
M´Emoire sur la th´Eorie de L’octàEdre Articuĺe
,”
J. Math. Pures Appl.
,
3
, pp.
113
148
.
43.
Bricard
,
R.
,
1927
, “Lecons de cińEmatique,”
Tome II CińEmatique Appliqúee
,
Gauthier-Villars
,
Paris
, pp.
7
12
.
44.
Bennett
,
G. T.
,
1903
, “
A New Mechanism
,”
Engineering
,
76
, p.
777
.
45.
Perez
,
A.
, and
McCarthy
,
J. M.
,
2003
, “
Dimensional Synthesis of Bennett Linkages
,”
ASME J. Mech. Des.
,
125
(
1
), pp.
98
104
.
You do not currently have access to this content.