Abstract

An increasing number of grounded robots are being used in prostate interventions to improve clinical outcomes, but their large size and high-cost limit their popularity. Thus, we present a hand-held 3-degree-of-freedom (DoF) parallel robot with remote center of motion (RCM) for minimally invasive prostate biopsy applications, combining the flexibility of hand-held devices with the precision of robotic assistance. First, the kinematic structure of robotic assistance is introduced according to its design requirements. Then, the kinematic analysis of robotic assistance is carried out by using a simplified kinematic model. The kinematic parameters are designed according to the desired workspace. A prototype has been developed and validated in animal experiments. Twenty beagles of different sizes were selected for the robot-assisted and controlled experiments, resulting in target errors of 3.30 ± 1.63 mm and 5.40 ± 1.76 mm, respectively. The error of robot-assisted experiments was significantly better than in controlled experiments. Preliminary animal tests have demonstrated that the hand-held robot can improve the accuracy of free-hand biopsy punctures.

References

1.
Chen
,
W.
,
Zheng
,
R.
,
Baade
,
P. D.
,
Zhang
,
S.
,
Zeng
,
H.
,
Bray
,
F.
,
Jemal
,
A.
,
Yu
,
X. Q.
, and
He
,
J.
,
2016
, “
Cancer Statistics in China, 2015
,”
CA Cancer J. Clin.
,
66
(
2
), pp.
115
132
.
2.
Sung
,
H.
,
Ferlay
,
J.
,
Siegel
,
R. L.
,
Laversanne
,
M.
,
Soerjomataram
,
I.
,
Jemal
,
A.
, and
Bray
,
F.
,
2021
, “
Global Cancer Statistics 2020: Globocan Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries
,”
CA Cancer J. Clin.
,
71
(
3
), pp.
209
249
.
3.
Center
,
M. M.
,
Jemal
,
A.
,
Lortet-Tieulent
,
J.
,
Ward
,
E.
,
Ferlay
,
J.
,
Brawley
,
O.
, and
Bray
,
F.
,
2012
, “
International Variation in Prostate Cancer Incidence and Mortality Rates
,”
Eur. Urol.
,
61
(
6
), pp.
1079
1092
.
4.
Wong
,
M. C. S.
,
Goggins
,
W. B.
,
Wang
,
H. H. X.
,
Fung
,
F. D. H.
,
Leung
,
C.
,
Wong
,
S. Y. S.
,
Ng
,
C. F.
, and
Sung
,
J. J. Y.
,
2016
, “
Global Incidence and Mortality for Prostate Cancer: Analysis of Temporal Patterns and Trends in 36 Countries
,”
Eur. Urol.
,
70
(
5
), pp.
862
874
.
5.
Mottet
,
N.
,
Bellmunt
,
J.
,
Bolla
,
M.
,
Briers
,
E.
,
Cumberbatch
,
M. G.
,
De Santis
,
M.
,
Fossati
,
N.
, et al
,
2017
, “
Eau-estro-siog Guidelines on Prostate Cancer. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent
,”
Eur. Urol.
,
71
(
4
), pp.
618
629
.
6.
Terris
,
M. K.
,
1999
, “
Sensitivity and Specificity of Sextant Biopsies in the Detection of Prostate Cancer: Preliminary Report
,”
Urology
,
54
(
3
), pp.
486
489
.
7.
Rabbani
,
F.
,
Stroumbakis
,
N.
,
Kava
,
B. R.
,
Cookson
,
M. S.
, and
Fair
,
W. R.
,
1998
, “
Incidence and Clinical Significance of False-Negative Sextant Prostate Biopsies
,”
J. Urol.
,
159
(
4
), pp.
1247
1250
.
8.
Djavan
,
B.
,
Remzi
,
M.
,
Schulman
,
C. C.
,
Marberger
,
M.
, and
Zlotta
,
A. R.
,
2002
, “
Repeat Prostate Biopsy: Who, How and When?: A Review
,”
Eur. Urol.
,
42
(
2
), pp.
93
103
.
9.
Mian
,
B. M.
,
Naya
,
Y.
,
Okihara
,
K.
,
Vakar-Lopez
,
F.
,
Troncoso
,
P.
, and
Babaian
,
R. J.
,
2002
, “
Predictors of Cancer in Repeat Extended Multisite Prostate Biopsy in Men With Previous Negative Extended Multisite Biopsy
,”
Urology
,
60
(
5
), pp.
836
840
.
10.
Moreira
,
P.
,
van de Steeg
,
G.
,
Krabben
,
T.
,
Zandman
,
J.
,
Hekman
,
E. E. G.
,
van der Heijden
,
F.
,
Borra
,
R.
, and
Misra
,
S.
,
2017
, “
The Miriam Robot: A Novel Robotic System for MR-Guided Needle Insertion in the Prostate
,”
J. Med. Rob. Res.
,
2
(
4
), p.
1750006
.
11.
Krieger
,
A.
,
Susil
,
R. C.
,
Ménard
,
C.
,
Coleman
,
J. A.
,
Fichtinger
,
G.
,
Atalar
,
E.
, and
Whitcomb
,
L. L.
,
2005
, “
Design of a Novel MRI Compatible Manipulator for Image Guided Prostate Interventions
,”
IEEE Trans. Biomed. Eng.
,
52
(
2
), pp.
306
313
.
12.
Stoianovici
,
D.
,
Song
,
D.
,
Petrisor
,
D.
,
Ursu
,
D.
,
Mazilu
,
D.
,
Mutener
,
M.
,
Schar
,
M.
, and
Patriciu
,
A.
,
2007
, “
MRI Stealth” Robot for Prostate Interventions
,”
Minim. Invasive Ther. Allied Technol.
,
16
(
4
), pp.
241
248
.
13.
Stoianovici
,
D.
,
Kim
,
C.
,
Petrisor
,
D.
,
Jun
,
C.
,
Lim
,
S.
,
Ball
,
M. W.
,
Ross
,
A.
,
Macura
,
K. J.
, and
Allaf
,
M.
,
2016
, “
MR Safe Robot, FDA Clearance, Safety and Feasibility of Prostate Biopsy Clinical Trial
,”
IEEE/ASME Trans. Mechatron.
,
22
(
1
), pp.
115
126
.
14.
Krieger
,
A.
,
Iordachita
,
I.
,
Song
,
S.-E.
,
Cho
,
N. B.
,
Guion
,
P.
,
Fichtinger
,
G.
, and
Whitcomb
,
L. L.
,
2010
, “
Development and Preliminary Evaluation of an Actuated MRI-Compatible Robotic Device for MRI-Guided Prostate Intervention
,”
2010 IEEE International Conference on Robotics and Automation
,
IEEE
, pp.
1066
1073
.
15.
Krieger
,
A.
,
Song
,
S.-E.
,
Cho
,
N. B.
,
Iordachita
,
I. I.
,
Guion
,
P.
,
Fichtinger
,
G.
, and
Whitcomb
,
L. L.
,
2011
, “
Development and Evaluation of an Actuated MRI-Compatible Robotic System for MRI-Guided Prostate Intervention
,”
IEEE/ASME Trans. Mechatron.
,
18
(
1
), pp.
273
284
.
16.
Su
,
H.
,
Camilo
,
A.
,
Cole
,
G. A.
,
Hata
,
N.
,
Tempany
,
C. M.
, and
Fischer
,
G. S.
,
2011
, “
High-field MRI-Compatible Needle Placement Robot for Prostate Interventions
,”
Stud. Health Technol. Inform.
,
163
, pp.
623
629
.
17.
Shang
,
W.
,
Su
,
H.
,
Li
,
G.
, and
Fischer
,
G. S.
,
2013
, “
Teleoperation System With Hybrid Pneumatic-Piezoelectric Actuation for MRI-Guided Needle Insertion With Haptic Feedback
,”
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
IEEE
, pp.
4092
4098
.
18.
Chen
,
Y.
,
Squires
,
A.
,
Seifabadi
,
R.
,
Xu
,
S.
,
Agarwal
,
H.
,
Bernardo
,
M.
,
Pinto
,
P.
,
Choyke
,
P.
,
Wood
,
B.
, and
Tse
,
Z. T. H.
,
2016
, “
Robotic System for MRI-Guided Focal Laser Ablation in the Prostate
,”
IEEE/ASME Trans. Mechatron.
,
22
(
1
), pp.
107
114
.
19.
Goldenberg
,
A. A.
,
Trachtenberg
,
J.
,
Yi
,
Y.
,
Weersink
,
R.
,
Sussman
,
M. S.
,
Haider
,
M.
,
Ma
,
L.
, and
Kucharczyk
,
W.
,
2010
, “
Robot-Assisted MRI-Guided Prostatic Interventions
,”
Robotica
,
28
(
2
), pp.
215
234
.
20.
Schouten
,
M. G.
,
Bomers
,
J. G.
,
Yakar
,
D.
,
Huisman
,
H.
,
Rothgang
,
E.
,
Bosboom
,
D.
,
Scheenen
,
T. W.
,
Misra
,
S.
, and
Fütterer
,
J. J.
,
2012
, “
Evaluation of a Robotic Technique for Transrectal MRI-Guided Prostate Biopsies
,”
Eur. Radiol.
,
22
(
2
), pp.
476
483
.
21.
Moreira
,
P.
,
Boskma
,
K. J.
, and
Misra
,
S.
,
2017
, “
Towards MRI-Guided Flexible Needle Steering Using Fiber Bragg Grating-Based Tip Tracking
,”
2017 IEEE International Conference on Robotics and Automation (ICRA)
,
IEEE
, pp.
4849
4854
.
22.
Moreira
,
P.
,
Kuil
,
L.
,
Dias
,
P.
,
Borra
,
R.
, and
Misra
,
S.
,
2019
, “
Tele-operated MRI-Guided Needle Insertion for Prostate Interventions
,”
J. Med. Rob. Res.
,
4
(
01
), p.
1842003
.
23.
Lin
,
Y.
,
Shi
,
Y.
,
Wang
,
F.
,
Zhang
,
J.
,
Sun
,
H.
, and
Wu
,
W.
,
2021
, “
Development and Placement Accuracy Evaluation of an MR Conditional Robot for Prostate Intervention
,”
Med. Biol. Eng. Comput.
,
59
(
5
), pp.
1023
1034
.
24.
Patel
,
N. A.
,
Li
,
G.
,
Shang
,
W.
,
Wartenberg
,
M.
,
Heffter
,
T.
,
Burdette
,
E. C.
,
Iordachita
,
I.
, et al
,
2019
, “
System Integration and Preliminary Clinical Evaluation of a Robotic System for MRI-Guided Transperineal Prostate Biopsy
,”
J. Med. Rob. Res.
,
4
(
2
), p.
1950001
.
25.
Fichtinger
,
G.
,
Fiene
,
J. P.
,
Kennedy
,
C. W.
,
Kronreif
,
G.
,
Iordachita
,
I.
,
Song
,
D. Y.
,
Burdette
,
E. C.
, and
Kazanzides
,
P.
,
2008
, “
Robotic Assistance for Ultrasound-Guided Prostate Brachytherapy
,”
Med. Image Anal.
,
12
(
5
), pp.
535
545
.
26.
Phee
,
L.
,
Xiao
,
D.
,
Yuen
,
J.
,
Chan
,
C. F.
,
Ho
,
H.
,
Thng
,
C. H.
,
Cheng
,
C.
, and
Ng
,
W. S.
,
2005
, “
Ultrasound Guided Robotic System for Transperineal Biopsy of the Prostate
,”
Proceedings of the 2005 IEEE International Conference on Robotics and Automation
,
IEEE
, pp.
1315
1320
.
27.
Rossa
,
C.
,
Usmani
,
N.
,
Sloboda
,
R.
, and
Tavakoli
,
M.
,
2016
, “
A Hand-Held Assistant for Semiautomated Percutaneous Needle Steering
,”
IEEE Trans. Biomed. Eng.
,
64
(
3
), pp.
637
648
.
28.
Miah
,
S.
,
Servian
,
P.
,
Patel
,
A.
,
Lovegrove
,
C.
,
Skelton
,
L.
,
Shah
,
T. T.
,
Eldred-Evans
,
D.
, et al
,
2020
, “
A Prospective Analysis of Robotic Targeted MRI-US Fusion Prostate Biopsy Using the Centroid Targeting Approach
,”
J. Rob. Surg.
,
14
(
1
), pp.
69
74
.
29.
Kaufmann
,
S.
,
Russo
,
G. I.
,
Bamberg
,
F.
,
Löwe
,
L.
,
Morgia
,
G.
,
Nikolaou
,
K.
,
Stenzl
,
A.
,
Kruck
,
S.
, and
Bedke
,
J.
,
2018
, “
Prostate Cancer Detection in Patients With Prior Negative Biopsy Undergoing Cognitive-, Robotic-or in-Bore MRI Target Biopsy
,”
World J. Urol.
,
36
(
5
), pp.
761
768
.
30.
Wang
,
W.
,
Pan
,
B.
,
Fu
,
Y.
, and
Liu
,
Y.
,
2021
, “
Development of a Transperineal Prostate Biopsy Robot Guided by MRI-Trus Image
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
17
(
4
), p.
e2266
.
31.
Lim
,
S.
,
Jun
,
C.
,
Chang
,
D.
,
Petrisor
,
D.
,
Han
,
M.
, and
Stoianovici
,
D.
,
2019
, “
Robotic Transrectal Ultrasound Guided Prostate Biopsy
,”
IEEE Trans. Biomed. Eng.
,
66
(
9
), pp.
2527
2537
.
32.
Maris
,
B.
,
Tenga
,
C.
,
Vicario
,
R.
,
Palladino
,
L.
,
Murr
,
N.
,
De Piccoli
,
M.
,
Calanca
,
A.
, et al
,
2021
, “
Toward Autonomous Robotic Prostate Biopsy: A Pilot Study
,”
Int. J. Comput. Assist. Radiol. Surg.
,
16
(
8
), pp.
1393
1401
.
33.
Payne
,
C. J.
, and
Yang
,
G.-Z.
,
2014
, “
Hand-Held Medical Robots
,”
Ann. Biomed. Eng.
,
42
(
8
), pp.
1594
1605
.
34.
Wang
,
Z.
,
Bao
,
S.
,
Wang
,
D.
,
Qian
,
S.
,
Zhang
,
J.
, and
Hai
,
M.
,
2023
, “
Design of a Novel Flexible Robotic Laparoscope Using a Two Degrees-of-Freedom Cable-Driven Continuum Mechanism With Major Arc Notches
,”
ASME J. Mech. Rob.
,
15
(
6
), p.
064502
.
35.
Zhang
,
T.
,
Ping
,
Z.
, and
Zuo
,
S.
,
2021
, “
Miniature Continuum Manipulator With Three Degrees-of-Freedom Force Sensing for Retinal Microsurgery
,”
ASME J. Mech. Rob.
,
13
(
4
), p.
041002
.
36.
Essomba
,
T.
,
Hsu
,
Y.
,
Sandoval Arevalo
,
J. S.
,
Laribi
,
M. A.
, and
Zeghloul
,
S.
,
2019
, “
Kinematic Optimization of a Reconfigurable Spherical Parallel Mechanism for Robotic-Assisted Craniotomy
,”
ASME J. Mech. Rob.
,
11
(
6
), p.
060905
.
You do not currently have access to this content.