Abstract

Scholars have proposed to allow collisions of cables with the base, the end-effector, or obstacles to expand the workspace of cable-driven parallel robots (CDPRs) in recent years. However, allowing collisions also leads to new challenges in kinematics and dynamics modeling for CDPRs. To this end, this article focuses on a planar fully constrained n-degree-of-freedom (DOF) CDPR driven by n + 1 cables allowing collisions and develops a data-driven dynamics modeling strategy. The data-driven dynamics modeling strategy can address the collisions and optimal tension distribution issues simultaneously. Based on the data-driven dynamics modeling strategy, this article proposes a data-driven dynamics-based control strategy for the planar CDPR allowing collisions. A planar two-DOF CDPR prototype driven by three cables is established to evaluate the data-driven dynamics modeling strategy and data-driven dynamics-based control strategy.

References

1.
Anson
,
M.
,
Alamdari
,
A.
, and
Krovi
,
V.
,
2017
, “
Orientation Workspace and Stiffness Optimization of Cable-Driven Parallel Manipulators With Base Mobility
,”
ASME J. Mech. Rob.
,
9
(
3
), p.
031011
.
2.
Xiong
,
H.
,
Cao
,
H.
,
Zeng
,
W.
,
Huang
,
J.
,
Diao
,
X.
,
Lu
,
W.
, and
Lou
,
Y.
,
2022
, “
Real-Time Reconfiguration Planning for the Dynamic Control of Reconfigurable Cable-Driven Parallel Robots
,”
ASME J. Mech. Rob.
,
14
(
6
), p.
060913
.
3.
Cuvillon
,
L.
,
Weber
,
X.
, and
Gangloff
,
J.
,
2020
, “
Modal Control for Active Vibration Damping of Cable-Driven Parallel Robots
,”
ASME J. Mech. Rob.
,
12
(
5
), p.
051004
.
4.
Zhou
,
B.
,
Li
,
S.
,
Zi
,
B.
,
Chen
,
B.
, and
Zhu
,
W.
,
2023
, “
Multi-Objective Optimal Design of a Cable-Driven Parallel Robot Based on an Adaptive Adjustment Inertia Weight Particle Swarm Optimization Algorithm
,”
ASME J. Mech. Des.
,
145
(
8
), p.
083301
.
5.
Xie
,
G.
,
Zhang
,
Z.
,
Shao
,
Z.
, and
Wang
,
L.
,
2022
, “
Research on the Orientation Error of the Translational Cable-Driven Parallel Robots
,”
ASME J. Mech. Rob.
,
14
(
3
), p.
031003
.
6.
Gao
,
J.
,
Zhou
,
B.
,
Zi
,
B.
,
Qian
,
S.
, and
Zhao
,
P.
,
2022
, “
Kinematic Uncertainty Analysis of a Cable-Driven Parallel Robot Based on an Error Transfer Model
,”
ASME J. Mech. Rob.
,
14
(
5
), p.
051008
.
7.
Xiang
,
S.
,
Gao
,
H.
,
Liu
,
Z.
, and
Gosselin
,
C.
,
2020
, “
Dynamic Point-to-Point Trajectory Planning for Three Degrees-of-Freedom Cable-Suspended Parallel Robots Using Rapidly Exploring Random Tree Search
,”
ASME J. Mech. Rob.
,
12
(
4
), p.
041007
.
8.
Lau
,
D.
,
Eden
,
J.
,
Tan
,
Y.
, and
Oetomo
,
D.
,
2016
, “
CASPR: A Comprehensive Cable-Robot Analysis and Simulation Platform for the Research of Cable-Driven Parallel Robots
,” IEEE International Conference on Intelligent Robots and Systems (IROS),
Daejeon, South Korea
,
Oct. 9–14
,
IEEE
, pp.
3004
3011
.
9.
Abdolshah
,
S.
,
Zanotto
,
D.
,
Rosati
,
G.
, and
Agrawal
,
S. K.
,
2017
, “
Optimizing Stiffness and Dexterity of Planar Adaptive Cable-Driven Parallel Robots
,”
ASME J. Mech. Rob.
,
9
(
3
), p.
031004
.
10.
Mao
,
Y.
,
Jin
,
X.
,
Dutta
,
G. G.
,
Scholz
,
J. P.
, and
Agrawal
,
S. K.
,
2015
, “
Human Movement Training With a Cable Driven Arm Exoskeleton (CAREX)
,”
IEEE. Trans. Neural. Syst. Rehabil. Eng.
,
23
(
1
), pp.
84
92
.
11.
Alamdari
,
A.
,
Haghighi
,
R.
, and
Krovi
,
V.
,
2019
, “
Gravity-Balancing of Elastic Articulated-Cable Leg-Orthosis Emulator
,”
Mech. Mach. Theory.
,
131
, pp.
351
370
.
12.
Alamdari
,
A.
,
Haghighi
,
R.
, and
Krovi
,
V.
,
2018
, “
Stiffness Modulation in an Elastic Articulated-Cable Leg-Orthosis Emulator: Theory and Experiment
,”
IEEE Trans. Rob.
,
34
(
5
), pp.
1266
1279
.
13.
Chesser
,
P. C.
,
Wang
,
P. L.
,
Vaughan
,
J. E.
,
Lind
,
R. F.
, and
Post
,
B. K.
,
2022
, “
Kinematics of a Cable-Driven Robotic Platform for Large-Scale Additive Manufacturing
,”
ASME J. Mech. Rob.
,
14
(
2
), p.
021010
.
14.
Blanchet
,
L.
, and
Merlet
,
J.
,
2014
, “
Interference Detection for Cable-Driven Parallel Robots (CDPRs)
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
,
Besançon, France
,
July 8–11
, pp.
1413
1418
.
15.
Meziane
,
R.
,
Cardou
,
P.
, and
Otis
,
M. J.-D.
,
2019
, “
Cable Interference Control in Physical Interaction for Cable-Driven Parallel Mechanisms
,”
Mech. Mach. Theory.
,
132
, pp.
30
47
.
16.
Sun
,
C.
,
Gao
,
H.
,
Liu
,
Z.
,
Xiang
,
S.
,
Yu
,
H.
,
Li
,
N.
, and
Deng
,
Z.
,
2021
, “
Design and Optimization of Three-Degree-of-Freedom Planar Adaptive Cable-Driven Parallel Robots Using the Cable Wrapping Phenomenon
,”
Mech. Mach. Theory.
,
166
, p.
104475
.
17.
Lei
,
M. C.
,
2020
, “
Dynamics of Cable Driven Parallel Manipulator Allowing Cable Wrapping Over Rigid Link
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
,
Boston, MA
,
July 6–9
, pp.
215
221
.
18.
Martin
,
A.
,
Caro
,
S.
, and
Cardou
,
P.
,
2018
, “Geometric Determination of the Cable-Cylinder Interference Regions in the Workspace of a Cable-Driven Parallel Robot,”
Mechanisms and Machine Science
, C. Gosselin, P. Cardou, T. Bruckmann, and A. Pott, eds., Vol.
53
,
Springer
,
Dordrecht, Netherlands
, pp.
117
127
.
19.
Lessanibahri
,
S.
,
Cardou
,
P.
, and
Caro
,
S.
,
2020
, “
A Cable-Driven Parallel Robot With an Embedded Tilt-Roll Wrist
,”
ASME J. Mech. Rob.
,
12
(
2
), p.
021107
.
20.
Métillon
,
M.
,
Cardou
,
P.
,
Subrin
,
K.
,
Charron
,
C.
, and
Caro
,
S.
,
2021
, “
A Cable-Driven Parallel Robot With Full-Circle End-Effector Rotations
,”
ASME J. Mech. Rob.
,
13
(
3
), p.
031017
.
21.
Zou
,
Y.
,
Hu
,
Y.
,
Cao
,
H.
,
Xu
,
Y.
,
Yu
,
Y.
,
Lu
,
W.
, and
Xiong
,
H.
,
2022
, “
Data-Driven Kinematic Control Scheme for Cable-Driven Parallel Robots Allowing Collisions
,”
IEEE International Conference on Intelligent Robots and Systems (IROS)
,
Kyoto, Japan
,
Oct. 23–27
, pp.
IEEE
, pp.
5003
5008
.
22.
Lei
,
M. C.
, and
Oetomo
,
D.
,
2013
, “
Modelling of Cable Wrapping Phenomenon Towards Improved Cable-Driven Mechanisms
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
,
Wollongong, Australia,
,
July 9–12
,
IEEE
, pp.
649
655
.
23.
Sun
,
C.
,
Gao
,
H.
,
Liu
,
Z.
,
Xiang
,
S.
,
Yu
,
H.
,
Li
,
N.
, and
Deng
,
Z.
,
2022
, “
Design of Spatial Adaptive Cable-Driven Parallel Robots With an Unlimited Rotation Axis Using the Cable Wrapping Phenomenon
,”
Mech. Mach. Theory.
,
171
, p.
104720
.
24.
Rushton
,
M.
, and
Khajepour
,
A.
,
2021
, “
Planar Variable Structure Cable-Driven Parallel Robots for Circumventing Obstacles
,”
ASME J. Mech. Rob.
,
13
(
2
), p.
021011
.
25.
Rushton
,
M.
, and
Khajepour
,
A.
,
2023
, “
An Atlas-Based Approach to Planar Variable-Structure Cable-Driven Parallel Robot Configuration-Space Representation
,”
IEEE Trans. Rob.
,
39
(
2
), pp.
1594
1606
.
26.
Hu
,
Y.
,
Zou
,
Y.
,
Cao
,
H.
,
Lu
,
W.
, and
Xiong
,
H.
,
2022
, “
Modeling and Control of a Cable-Driven Parallel Robot Allowing Cable-Edge Collisions
,”
International Conference on Advanced Robotics and Mechatronics (ARM)
,
Guilin, China
,
July 9–11
,
IEEE
, pp.
483
487
.
27.
Liu
,
Y.
,
Cao
,
Z.
,
Xiong
,
H.
,
Du
,
J.
,
Cao
,
H.
, and
Zhang
,
L.
,
2023
, “
Dynamic Obstacle Avoidance for Cable-Driven Parallel Robots With Mobile Bases Via Sim-to-Real Reinforcement Learning
,”
IEEE Rob. Autom. Lett.
,
8
(
3
), pp.
1683
1690
.
28.
Giorelli
,
M.
,
Renda
,
F.
,
Calisti
,
M.
,
Arienti
,
A.
,
Ferri
,
G.
, and
Laschi
,
C.
,
2015
, “
Neural Network and Jacobian Method for Solving the Inverse Statics of a Cable-Driven Soft Arm With Nonconstant Curvature
,”
IEEE Trans. Rob.
,
31
(
4
), pp.
823
834
.
29.
Aflakian
,
A.
,
Safaryazdi
,
A.
,
Tale Masouleh
,
M.
, and
Kalhor
,
A.
,
2018
, “
Experimental Study on the Kinematic Control of a Cable Suspended Parallel Robot for Object Tracking Purpose
,”
Mechatronics
,
50
, pp.
160
176
.
30.
Chawla
,
I.
,
Pathak
,
P. M.
,
Notash
,
L.
,
Samantaray
,
A. K.
,
Li
,
Q.
, and
Sharma
,
U. K.
,
2023
, “
Inverse and Forward Kineto-Static Solution of a Large-Scale Cable-Driven Parallel Robot Using Neural Networks
,”
Mech. Mach. Theory.
,
179
, p.
105107
.
31.
Mishra
,
U. A.
, and
Caro
,
S.
,
2022
, “
Forward Kinematics for Suspended Under-Actuated Cable-Driven Parallel Robots With Elastic Cables: A Neural Network Approach
,”
ASME J. Mech. Rob.
,
14
(
4
), p.
041008
.
32.
Xiong
,
H.
,
Zhang
,
L.
, and
Diao
,
X.
,
2020
, “
A Learning-Based Control Framework for Cable-Driven Parallel Robots With Unknown Jacobians
,”
Proc. Inst. Mech. Eng., Part I: J. Systems Control Eng.
,
234
(
9
), pp.
1024
1036
.
33.
Khosravi
,
M.
, and
Taghirad
,
H.
,
2014
, “
Robust PID Control of Fully-Constrained Cable Driven Parallel Robots
,”
Mechatronics
,
24
(
2
), pp.
87
97
.
34.
Jamshidifar
,
H.
,
Khosravani
,
S.
,
Fidan
,
B.
, and
Khajepour
,
A.
,
2018
, “
Vibration Decoupled Modeling and Robust Control of Redundant Cable-Driven Parallel Robots
,”
IEEE/ASME Trans. Mechatron.
,
23
(
2
), pp.
690
701
.
35.
Caverly
,
R. J.
, and
Forbes
,
J. R.
,
2014
, “
Dynamic Modeling and Noncollocated Control of a Flexible Planar Cable-Driven Manipulator
,”
IEEE Trans. Rob.
,
30
(
6
), pp.
1386
1397
.
36.
Khosravi
,
M. A.
, and
Taghirad
,
H. D.
,
2014
, “
Dynamic Modeling and Control of Parallel Robots With Elastic Cables: Singular Perturbation Approach
,”
IEEE Trans. Rob.
,
30
(
3
), pp.
694
704
.
37.
Alamdari
,
A.
, and
Krovi
,
V.
,
2016
, “
Design and Analysis of a Cable-Driven Articulated Rehabilitation System for Gait Training
,”
ASME J. Mech. Rob.
,
8
(
5
), p.
051018
.
38.
Gouttefarde
,
M.
,
Lamaury
,
J.
,
Reichert
,
C.
, and
Bruckmann
,
T.
,
2015
, “
A Versatile Tension Distribution Algorithm for n-DOF Parallel Robots Driven by n + 2 Cables
,”
IEEE Trans. Rob.
,
31
(
6
), pp.
1444
1457
.
39.
Rasheed
,
T.
,
Long
,
P.
, and
Caro
,
S.
,
2020
, “
Wrench-Feasible Workspace of Mobile Cable-Driven Parallel Robots
,”
ASME J. Mech. Rob.
,
12
(
3
), p.
031009
.
40.
Barata
,
J. C. A.
, and
Hussein
,
M. S.
,
2012
, “
The Moore–Penrose Pseudoinverse: A Tutorial Review of the Theory
,”
Brazilian J. Phys.
,
42
(
1
), pp.
146
165
.
41.
Gouttefarde
,
M.
, and
Gosselin
,
C. M.
,
2004
, “
On the Properties and the Determination of the Wrench-Closure Workspace of Planar Parallel Cable-Driven Mechanisms
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Salt Lake City, UT
,
Sept. 28–Oct. 2
,
ASME
, pp.
337
346
.
42.
Sun
,
Y.
,
Yuan
,
M.
,
Liu
,
X.
,
Su
,
M.
,
Wang
,
L.
,
Zeng
,
Y.
,
Zang
,
H.
, and
Nie
,
L.
,
2021
, “
A Sample Selection Method Specific to Unknown Test Samples for Calibration and Validation Sets Based on Spectra Similarity
,”
Spectrochim. Acta – Part A Mol. Biomol. Spectrosc.
,
258
, p.
119870
.
43.
Giorelli
,
M.
,
Renda
,
F.
,
Ferri
,
G.
, and
Laschi
,
C.
,
2013
, “
A Feed Forward Neural Network for Solving the Inverse Kinetics of Non-Constant Curvature Soft Manipulators Driven by Cables
,”
ASME Dynamic Systems and Control Conference
,
Palo Alto, CA
,
Oct. 21–23
,
ASME
, p.
V003T38A001
.
44.
Cui
,
X.
,
Chen
,
W.
,
Jin
,
X.
, and
Agrawal
,
S. K.
,
2017
, “
Design of a 7-dof Cable-Driven Arm Exoskeleton (carex-7) and a Controller for Dexterous Motion Training or Assistance
,”
IEEE/ASME Trans. Mechatron.
,
22
(
1
), pp.
161
172
.
45.
Wang
,
T.
,
Tong
,
S.
,
Yi
,
J.
, and
Li
,
H.
,
2015
, “
Adaptive Inverse Control of Cable-Driven Parallel System Based on Type-2 Fuzzy Logic Systems
,”
IEEE Trans. Fuzzy Syst.
,
23
(
5
), pp.
1803
1816
.
46.
Song
,
C.
, and
Lau
,
D.
,
2022
, “
Workspace-Based Model Predictive Control for Cable-Driven Robots
,”
IEEE Trans. Robot.
,
38
(
4
), pp.
2577
2596
.
47.
Jia
,
H.
,
Shang
,
W.
,
Xie
,
F.
,
Zhang
,
B.
, and
Cong
,
S.
,
2020
, “
Second-Order Sliding-Mode-Based Synchronization Control of Cable-Driven Parallel Robots
,”
IEEE/ASME Trans. Mechatron.
,
25
(
1
), pp.
383
394
.
You do not currently have access to this content.