Abstract

Bistable soft robots are gaining momentum for their fast speed. This study presents a novel asymmetric mechanically prestressed, pneumatically driven, bistable laminated soft actuator. Its two orthogonal stable shapes are created by prestretching two orthogonal elastomer matrix composites before bonding them to a thin core layer. Two fluidic layers with fluid channels are bonded on either side of the core layer to actuate and trigger the snap-through process of the actuator. An analytical model is proposed as follows: the actuator net energy is calculated based on polynomials with unknown coefficients, and the stable shapes of the actuator are computed as a result of pneumatic pressure and external loads with the Rayleigh–Ritz method. Bistable actuators are fabricated with different prestrains, and motion capture and tensile loading experiments are conducted for model validation. A gripper is fabricated with two bistable actuators and demonstrated to grasp a variety of objects. Sensitivity studies are performed to identify the actuator response as a function of a variety of design parameters.

References

1.
Forterre
,
Y.
,
Skotheim
,
J. M.
,
Dumais
,
J.
, and
Mahadevan
,
L.
,
2005
, “
How the Venus Flytrap Snaps
,”
Nature
,
433
(
7024
), pp.
421
425
.
2.
Markin
,
V. S.
,
Volkov
,
A. G.
, and
Jovanov
,
E.
,
2008
, “
Active Movements in Plants: Mechanism of Trap Closure by Dionaea Muscipula Ellis
,”
Plant Signal. Behav.
,
3
(
10
), pp.
778
783
.
3.
Haas
,
F.
,
Gorb
,
S.
, and
Wootton
,
R.
,
2000
, “
Elastic Joints in Dermapteran Hind Wings: Materials and Wing Folding
,”
Arthropod Struct. Dev.
,
29
(
2
), pp.
137
146
.
4.
Qiu
,
J.
,
Lang
,
J. H.
, and
Slocum
,
A. H.
,
2004
, “
A Curved-Beam Bistable Mechanism
,”
J. Microelectromech. Syst.
,
13
(
2
), pp.
137
146
.
5.
Deng
,
Z.
, and
Dapino
,
M. J.
,
2017
, “
Influence of Electrical Impedance and Mechanical Bistability on Galfenol-Based Unimorph Harvesters
,”
J. Intell. Mater. Syst. Struct.
,
28
(
3
), pp.
421
431
.
6.
Chillara
,
V.
, and
Dapino
,
M.
,
2017
, “
Mechanically-Prestressed Bistable Composite Laminates With Weakly Coupled Equilibrium Shapes
,”
Compos. Part B: Eng.
,
111
, pp.
251
260
.
7.
Chillara
,
V.
, and
Dapino
,
M.
,
2018
, “
Stability Considerations and Actuation Requirements in Bistable Laminated Composites
,”
Compos. Struct.
,
184
, pp.
1062
1070
.
8.
Ye
,
K.
, and
Ji
,
J.
,
2023
, “
A Novel Morphing Propeller System Inspired by Origami-Based Structure
,”
ASME J. Mech. Rob.
,
15
(
1
), p.
011006
.
9.
Zhu
,
Y.
, and
Filipov
,
E. T.
,
2020
, “
A Bar and Hinge Model for Simulating Bistability in Origami Structures With Compliant Creases
,”
ASME J. Mech. Rob.
,
12
(
2
), p.
021110
.
10.
Overvelde
,
J. T.
,
Kloek
,
T.
,
D’haen
,
J. J.
, and
Bertoldi
,
K.
,
2015
, “
Amplifying the Response of Soft Actuators by Harnessing Snap-Through Instabilities
,”
Proc. Natl. Acad. Sci. U.S.A.
,
112
(
35
), pp.
10863
10868
.
11.
Chi
,
Y.
,
Li
,
Y.
,
Zhao
,
Y.
,
Hong
,
Y.
,
Tang
,
Y.
, and
Yin
,
J.
,
2022
, “
Bistable and Multistable Actuators for Soft Robots: Structures, Materials, and Functionalities
,”
Adv. Mater.
,
34
(
19
), p.
2110384
.
12.
Jung
,
S.-P.
,
Jung
,
G.-P.
,
Koh
,
J.-S.
,
Lee
,
D.-Y.
, and
Cho
,
K.-J.
,
2015
, “
Fabrication of Composite and Sheet Metal Laminated Bistable Jumping Mechanism
,”
ASME J. Mech. Rob.
,
7
(
2
), p.
021010
.
13.
Meng
,
L.
,
Kang
,
R.
,
Gan
,
D.
,
Chen
,
G.
,
Chen
,
L.
,
Branson
,
D. T.
, and
Dai
,
J. S.
,
2020
, “
A Mechanically Intelligent Crawling Robot Driven by Shape Memory Alloy and Compliant Bistable Mechanism
,”
ASME J. Mech. Rob.
,
12
(
6
), p.
061005
.
14.
Chen
,
T.
,
Bilal
,
O. R.
,
Shea
,
K.
, and
Daraio
,
C.
,
2018
, “
Harnessing Bistability for Directional Propulsion of Soft, Untethered Robots
,”
Proc. Natl. Acad. Sci. U.S.A.
,
115
(
22
), pp.
5698
5702
.
15.
Tang
,
Y.
,
Chi
,
Y.
,
Sun
,
J.
,
Huang
,
T.-H.
,
Maghsoudi
,
O. H.
,
Spence
,
A.
,
Zhao
,
J.
,
Su
,
H.
, and
Yin
,
J.
,
2020
, “
Leveraging Elastic Instabilities for Amplified Performance: Spine-Inspired High-Speed and High-Force Soft Robots
,”
Sci. Adv.
,
6
(
19
), p.
eaaz6912
.
16.
Wu
,
S.
,
Ze
,
Q.
,
Dai
,
J.
,
Udipi
,
N.
,
Paulino
,
G. H.
, and
Zhao
,
R.
,
2021
, “
Stretchable Origami Robotic Arm With Omnidirectional Bending and Twisting
,”
Proc. Natl. Acad. Sci. U.S.A.
,
118
(
36
), p.
e2110023118
.
17.
Zhang
,
Z.
,
Ni
,
X.
,
Gao
,
W.
,
Shen
,
H.
,
Sun
,
M.
,
Guo
,
G.
,
Wu
,
H.
, and
Jiang
,
S.
,
2022
, “
Pneumatically Controlled Reconfigurable Bistable Bionic Flower for Robotic Gripper
,”
Soft Rob.
,
9
(
4
), pp.
657
668
.
18.
Lin
,
Y.
,
Zhang
,
C.
,
Tang
,
W.
,
Jiao
,
Z.
,
Wang
,
J.
,
Wang
,
W.
,
Zhong
,
Y.
, et al.,
2021
, “
A Bioinspired Stress-Response Strategy for High-Speed Soft Grippers
,”
Adv. Sci.
,
8
(
21
), p.
2102539
.
19.
Chi
,
Y.
,
Tang
,
Y.
,
Liu
,
H.
, and
Yin
,
J.
,
2020
, “
Leveraging Monostable and Bistable Pre-curved Bilayer Actuators for High-Performance Multitask Soft Robots
,”
Adv. Mater. Technol.
,
5
(
9
), p.
2000370
.
20.
Zhou
,
Y.
,
Headings
,
L. M.
, and
Dapino
,
M. J.
,
2022
, “
Modeling of Fluidic Prestressed Composite Actuators With Application to Soft Robotic Grippers
,”
IEEE Trans. Rob.
,
38
(
4
), pp.
2166
2178
.
21.
Zhou
,
Y.
,
Headings
,
L. M.
, and
Dapino
,
M. J.
,
2022
, “
Modeling of Soft Robotic Grippers Integrated With Fluidic Prestressed Composite Actuators
,”
ASME J. Mech. Rob.
,
14
(
3
), p.
031001
.
22.
Xu
,
Z.
,
Hu
,
L.
, and
Zhou
,
Y.
,
2022
, “
A Soft Gripper Integrated With Mechanically-Prestressed Soft Actuators
,”
2022 IEEE International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC)
,
Chongqing, China
,
Aug. 5–7
,
IEEE
, pp.
190
194
.
23.
Xu
,
Z.
,
Hu
,
L.
, and
Zhou
,
Y.
,
2022
, “
Pneumatic Soft Robotic Crawler Integrated With a Precurved Actuator Enables Fast Locomotion
,”
2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Xishuangbanna, China
,
Dec. 5–9
,
IEEE
, pp.
507
512
.
24.
Hyer
,
M. W.
,
1982
, “
The Room-Temperature Shapes of Four-Layer Unsymmetric Cross-Ply Laminates
,”
J. Compos. Mater.
,
16
(
4
), pp.
318
340
.
25.
Reddy
,
J. N.
,
2006
,
Theory and Analysis of Elastic Plates and Shells
,
CRC Press
,
Boca Raton, FL
.
26.
Pirrera
,
A.
,
Avitabile
,
D.
, and
Weaver
,
P.
,
2010
, “
Bistable Plates for Morphing Structures: A Refined Analytical Approach With High-Order Polynomials
,”
Int. J. Solids Struct.
,
47
(
25–26
), pp.
3412
3425
.
You do not currently have access to this content.