Abstract

With the development of minimally invasive surgery (MIS) technology, higher requirements are put forward for the performance of remote center of motion (RCM) manipulator. This paper presents the conceptual design of a novel two-degrees-of-freedom (2-DOF) spherical RCM mechanism, whose axes of all revote joints share the same RCM. Compared with the existing design, the proposed mechanism indicates a compact design and high structure stability, and the same scissor-like linkage makes it easy to realize modular design. It also has the advantages of singularity-free and motion decoupling in its workspace, which simplifies the implementation and control of the manipulator. In addition, compared with the traditional spherical scissor linkage mechanism, the proposed mechanism adds a rotation constraint on the output shaft to provide better operating performance. In this paper, the kinematics and singularities of different cases are deduced and compared, and the kinematic model of the best case is established. According to the workspace and constraints in MIS, the optimal structural parameters of the mechanism are determined by dimensional synthesis with the goal of optimal global operation performance. Furthermore, a prototype is assembled to verify the performance of the proposed mechanism. The experimental results show that the two-degrees-of-freedom prototype can provide a reliable RCM point. The compact design makes the manipulator have potential application prospects in MIS.

References

1.
Kuo
,
C. H.
,
Dai
,
J. S.
, and
Dasgupta
,
P.
,
2012
, “
Kinematic Design Considerations for Minimally Invasive Surgical Robots: An Overview
,”
Int. J. Med. Robot. Comput. Assist. Surg.
,
8
(
2
), pp.
127
145
.
2.
Dai
,
J. S.
,
2010
, “
Surgical Robotics and Its Development and Progress
,”
Robotica
,
28
(
S2
), pp.
161
161
.
3.
Locke
,
R. C. O.
, and
Patel
,
R. V.
,
2007
, “
Optimal Remote Center-of-Motion Location for Robotics-Assisted Minimally Invasive Surgery
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Rome, Italy
,
Apr. 10–14
, pp.
1900
1905
.
4.
Taylor
,
R. H.
, and
Stoianovici
,
D.
,
2003
, “
Medical Robotics in Computer–Integrated Surgery
,”
IEEE Trans. Rob. Autom.
,
19
(
5
), pp.
765
781
.
5.
Li
,
J. M.
,
Zhang
,
G. K.
,
Xing
,
Y.
,
Liu
,
H. B.
, and
Wang
,
S. X.
,
2016
, “
A Class of 2-Degree-of-Freedom Planar Remote Center-of-Motion Mechanisms Based on Virtual Parallelograms
,”
ASME J. Mech. Rob.
,
6
(
3
), p.
031014
.
6.
Huang
,
L.
,
Yin
,
L. R.
,
Liu
,
B.
, and
Yang
,
Y.
,
2021
, “
Design and Error Evaluation of Planar 2DOF Remote Center of Motion Mechanisms With Cable Transmissions
,”
ASME J. Mech. Des.
,
143
(
1
), p.
013301
.
7.
Kuo
,
C. H.
, and
Dai
,
J. S.
,
2012
, “
Kinematics of a Fully-Decoupled Remote Center-of-Motion Parallel Manipulator for Minimally Invasive Surgery
,”
ASME J. Med. Devices
,
6
(
2
), p.
021008
.
8.
Chen
,
G. L.
,
Wang
,
J.
,
Wang
,
H.
,
Chen
,
C.
,
Parenti-Castelli
,
V.
, and
Angeles
,
J.
,
2020
, “
Design and Validation of a Spatial Two-Limb 3R1T Parallel Manipulator With Remote Center-of-Motion
,”
Mech. Mach. Theory
,
149
, pp.
1
18
.
9.
Liu
,
S.
,
Chen
,
B.
,
Caro
,
S.
,
Briot
,
S.
,
Harewood
,
L.
, and
Chen
,
C.
,
2016
, “
A Cable Linkage With Remote Center of Motion
,”
Mech. Mach. Theory
,
105
, pp.
583
605
.
10.
Liu
,
S.
,
Harewood
,
L.
,
Chen
,
B.
, and
Chen
,
C.
,
2016
, “
A Skeletal Prototype of Surgical Arm Based on Dual-Triangular Mechanism
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041015
.
11.
Zhang
,
X. L.
, and
Nelson
,
C. A.
,
2008
, “
Kinematic Analysis and Optimization of a Novel Robot for Surgical Tool Manipulation
,”
ASME J. Med. Devices
,
2
(
2
), p.
021003
.
12.
Zemiti
,
N.
,
Morel
,
G.
,
Ortmaier,
T.
, and
Bonnet
,
N.
,
2007
, “
Mechatronic Design of a New Robot for Force Control in Minimally Invasive Surgery
,”
IEEE-ASME Trans. Mechatron.
,
12
(
2
), pp.
143
153
.
13.
Roovers
,
K.
, and
De Temmerman
,
N.
,
2017
, “
Deployable Scissor Grids Consisting of Translational Units
,”
Int. J. Solids Struct.
,
121
, pp.
45
61
.
14.
Mira
,
L. A.
,
Coelho
,
R. F.
,
Thrall
,
A. P.
, and
De Temmerman
,
N.
,
2015
, “
Parametric Evaluation of Deployable Scissor Arches
,”
Eng. Struct.
,
99
(
9
), pp.
479
491
.
15.
Mira
,
L. A.
,
Thrall
,
A. P.
, and
De Temmerman
,
N.
,
2014
, “
Deployable Scissor Arch for Transitional Shelters
,”
Autom. Constr.
,
43
(
7
), pp.
123
131
.
16.
Kocabas
,
H.
,
2009
, “
Gripper Design With Spherical Parallelogram Mechanism
,”
ASME J. Mech. Des.
,
131
(
7
), p.
075001
.
17.
Castro
,
M. N.
,
Rasmussen
,
J.
,
Andersen
,
M. S.
, and
Bai
,
S. P.
,
2019
, “
A Compact 3-DOF Shoulder Mechanism Constructed With Scissors Linkages for Exoskeleton Applications
,”
Mech. Mach. Theory
,
132
, pp.
264
278
.
18.
Afshar
,
M.
,
Carriere
,
J.
,
Meyer
,
T.
,
Sloboda
,
R.
,
Husain
,
S.
,
Usmani
,
N.
, and
Tavakoli
,
M.
,
2020
, “
Optimal Design of a Novel Spherical Scissor Linkage Remote Center of Motion Mechanism for Medical Robotics
,”
Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Las Vegas, NV
,
Oct. 24–Jan. 24
, pp.
6459
6465
.
19.
Dai
,
J. S.
,
Huang
,
Z.
, and
Lipkin
,
H.
,
2006
, “
Mobility of Overconstrained Parallel Mechanisms
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
220
229
.
20.
Gosselin
,
C. M.
,
1990
, “
Dexterity Indices for Planar and Spatial Robotic Manipulators
,”
Proceedings IEEE International Conference on Robotics and Automation
,
Cincinnati, OH
,
May 13–18
, pp.
650
655
.
21.
Huang
,
T.
,
Whitehouse
,
D. J.
, and
Wang
,
J. S.
,
1998
, “
The Local Dexterity, Optimum Architecture and Design Criteria of Parallel Machine Tools
,”
CIRP Ann.
,
47
(
1
), pp.
347
351
.
22.
Huang
,
T.
,
Wang
,
J. S.
,
Gosselin
,
C. M.
, and
Whitehouse
,
D. J.
,
2000
, “
Kinematic Synthesis of Hexapods With Prescribed Orientation Capability and Well-Conditioned Dexterity
,”
J. Manuf. Processes
,
2
(
1
), pp.
36
47
.
23.
Gosselin
,
C. M.
, and
Angeles
,
J.
,
1991
, “
A Globe Performance Index for the Kinematic Optimization of Robotic Manipulators
,”
ASME J. Mech. Des.
,
113
(
3
), pp.
220
226
.
24.
Ferguson
,
J. M.
,
Cai
,
L. Y.
,
Reed
,
A.
,
Siebold
,
M.
,
De
,
S.
,
Herrell
,
S. D.
, and
Webster
,
R. J.
,
2018
, “
Toward Image-Guided Partial Nephrectomy With the Da Vinci Robot: Exploring Surface Acquisition Methods for Intraoperative Re-Registration
,”
Proc. SPIE
,
10576
, p.
1057609
.
You do not currently have access to this content.